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ABSTRACT

Iterative minimization algorithms are studied for func-
tionals defined on En and convergence theorems are obtained.
First, a general review of convexity for functionals is given.
Then, the two aspects of an iterative minimization algorithm
—--the direction in which the next iterate is sought and the
step-size—-—-are independently analyzed. In the analysis of
direction emphasis is placed on the Gauss-Seidel and the
block Gauss-Seidel methods rather than on gradient methods.
A variety of step-size algorithms are studied including
minimization, Curry, over-relaxed Curry, use of one Newton
step and the methods of Altman, Armijo, and Goldstein. Fin-

ally, complete convergence theorems are given for represen-

tative algorithms.
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INTRODUCTION

mum of a (not necessarily quadratic) functional g:D cE'- R
have received considerable attention. In this paper we are
concerned with convergence theorems for such iterative mini-
mization algorithms and in particular for the Gauss-Seidel
minimization algorithm.

Any iterative minimization algorithm which produces a

p+1l

sequencé of iterates satisfying u” = up--tpep has two

tasks at each step: selecting the direction e® in which

the next approximation must lie, and choosing tD the step-
size or distance to the next iterate. Sometimes these deci-
sions are made simultaneously, as with Newton's method, or
are closely bound to each other as with conjugate gradient
methods. But generally the decisions can be made indepen-
dently, and we shall analyse them independently.
The directions we analyse fall into two categories.
The first consists of directions which are related to the

gradient direction, To minimize a functional g these

p P

methods select at u a direction e

satisfying
g' (%) e = 6l (o) |
where Hepn =1 and {5p} tends to zero only if {Hg'(up)n}

tends to zero. Under suitable hypotheses, certain conjugate
1




gradient methods and the methods of Newton, Jacobi, Gauss-
Southwell and Seidel are gradient-related.

A great many papers deal with gradient or gradient-
related minimization algorithms. Among the more recent are
Altman [1], [2], Armijo [3], Goldstein [14],[15],[16],[17],
Nashed [27], and Ostrowski [32]. The thrust of their work
has been to extend the spaces in which the results hold, re-
duce ﬁhe differentiability assumptions about the functional,
to increase the number of ways in which step-size may be de-
termined, and to generalize the relationship to the gradient.

In the second category are the Gauss-Seidel, Gauss-
Seidel-Newton, block Gauss-Seidel, block Gauss-Seidel-Newton
and Rosenbrock [36)] algorithms, which are not gradienf—
related methods. 1In contfast to the many papers on gradient
methods, only Schechter [38] has obtained non-local conver-
gence results for Gauss-Seidel and Gauss-Seidel-Newton. The
other methods have not previously been investigated at all
for non-quadratic functionals (or non-linear equations).

This paper is organized in the following manner. Chap-
ter I is background material and deals essentially with con-
vexity for functionals. The relationships between convexity

of a functional, monotonicity of its derivative, and posi-
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tive definiteness of its second derivative are reviewed. We
then consider pseduo~convexity and quasi-convexity and the
relationships between the various kinds of convexity are ex-
amined. Finally we examine another kind of convexity and
characterize it as precisely those quasi~convex functionals
for which every local minimum is a global minimum.

Chapters II and III contain the basic results on con-

- vergence. In Chapter III a wide variety of methods for

choosing step-size are examined, including, among others,

all of the step-size algorithms given in [2], (3], [14],[161],
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methods and study the principles underlying the proofs. The
analysis is carried out in sufficient generality so that the
results are independent of the direction algorithms. 1In
Chapter II we analyse the direction algorithms and give con-
ditions for g'(up) to tend to zero and for the sequence of
iterates to converge.

Chapter IV is devoted to applying the results of the
previous chapters to specific algorithms. Because we can
pair (in general) any distance choice with any direction
choice there are a great many potential algorithms, most of
them new but uninteresting. We therefore restrict ourselves

to illustrating rather than exhausting the possibilities.




Chapter V is devoted to block methods generally, and
block Gauss-Seidel and block successive over~-relaxation in
particular.

We can now summarize our results. The paper contains
the first nonlocal convergence theorems for non-linear suc-
cessive over-relaxation and the corresponding block methods.
We also greatly extend the class of functions for which
Gaués—Seidgl is known to converge, eliminating in some cases
convexity conditions on the functional. We also analyse for
the first time the steepest descent-Newton method and the
Jacobi iteration. Perhaps more important is the general
theory which separates the questions of step-size and direc-

tion and analyses the essential factors in each.




CHAPTER I

CONVEXITY
This chapter contains primarily background material.
Following some brief introductory material on derivatives
the bulk of the chapter deals with various kinds of convex-
ity for functionals.

. These sections are intended as a survey of the relevant
results in'Mangasarian [ 25], Minty [26], Newman [ 29], Poljak
[ 34], Ponstein [ 35], and Wilde [45]. We also obtain some
new results which further characterize the different kinds
of convexity and clarify the relationships between them.

1.1 Preliminaries. Let X and Y denote real Banach

spaces, and F:Dc X - Y a mapping defined on a subset D
of X. 1If for some x € D and every h € X

_ lim F(x+th) - F(x)
T t=-0 t

(1.1.1) VF (x;h)

exists then we say that F 1is Gateaux differentiable at x.
VF(x:h) is called the Gateaux differential of F at x in
the direction h. When VF(x;h) is bounded and linear in h
we denote it by F'(x)h and F'(x) is called the Gateaux de-
rivative of F at x. If, in addition,

lim [F (x+h) = F(x)= F' ()h] _
In]|~0 [l

(1.1.2) 0
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holds, then F'(x) is called the Frechet derivative of F

at x. If the Gateaux derivative exists in a neighborhood _
of x and is continuous at x then (1.1.2) holds and the
Frechet derivative also exists at x. A complete discussion
will be found in Vainberg [41].

If F maps a subset of X to Y, then F' is a map-
ping into L(X,Y), the Banach space of all bounded linear
operators from X to Y. The second (Gateaux or Frechet)
derivative F" is defined as above by F" = (F')'. In par-
ticular, when F is a functional (that is Y = R, the real
numbers), then L(X,R) is the conjugate space X* of X and
whenever F"(x) exists it is a bounded linear map from X
to X¥*, since, for h € X, F"(x)h € X*, and is a bounded
linear functional. F"(x) may also be thought of as a bi-
linear mapping from XX to R. |

Let the open interval or line segment {u+t(v-u):0<t<l}
be denoted by (u,v) and the corresponding closed interval by
Lu,v]. We say that amap G:Dc X - Y is continuous on
line segments if for any closed interval [u,v] € D, and
02t =1, G(urt(v-u)) is a continuous function of t. It
follows immediately from the definition of a Gateaux deriva-
tive, (1.1.1) that if G is Gateaux differentiable in D

then G 1is continuous on line segments in D.



For functionals we have a mean value theorem that is
similar to and based on the corresponding theorem for func-
tions of a single real variable. (See Vainberg [411].)

Let g:D< X - R have a Gateaux derivative that is con-
tinuous on line segments and let the closed interval [u,v]
lie in D. Then
(1.1.3) g(u) - g(v) = g (w) (u-v)
for some w in the open interval (u,v). There is also an
integral form of the mean value theorem. Under the same as-

sumptions as above
(1.1.4) gw) - g(v) = f;g- (utt (v-u)) (v-u) dt.

A similar relation is obtained for G:DC X = X*, Let G
have a Gateaux derivative that is continuous on line seg-
ments in D and suppose that the closed interval [u,v] lies

in D. Then

1
(1.1.5) (6w = &) (u-v) = [ [ & (art(v-w)) (u-v) (u-v)]at.

For further discussion of Gateaux and Frechet deriva-
tives we refer the reader to Vainberg [41] and Dieudonne [8].

We will frequently use functions whose values approach
zero only when their arguments do. We therefore define:

Definition 1.1.1. A function d:[0,«) - [0,») forces

its argument to zero if for any positive sequence {tn},




lim d(tp)= 0 dimplies 1lim t, = 0.

n—o n-—o

(1.1.6)
For brevity we simply say d is forcing. The following
lemma, whose proof is obvious, characterizes forcing func-

tions.

Lemma 1.1.1. A function d:[0,«) - [0,») forces its ar-

gument to zero if and only if d is bounded away from zero
in [¢,») for any positive c.

Clearly every non-decreasing function d such that
d(t) >0 for t >0 is forcing. We shall call such func-

tions non-decreasing forcing functions and use them through-

out this chapter. Non-decreasing forcing functions include
all polynomials with positive coefficients. More generally
we have the following, whose proof is immediate by Lemma

1.1.1.

Lemma 1.1.2. The sum, product and composition of any

two (non-decreasing) forcing functions is again a (non-
decreasing) forcing function.

We also have

Lemma 1.1.3. If d 1is an integrable forcing function

and ¢ 1s a non-negative constant then the function d de-

_ Al
ait) = jod(st+e)ds

fined by

is forcing.
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Proof: For any t define t'= %t. By Lemma 1.1.1
there is some c¢'> 0 such that s Z t° implies d(s) & c'.
But then for s = t,
_ 1 .Ste s+e
a(s) = j d(so+e)de = 1/s [a(e)ae = 1/s Jc'de-é Le!
° ¢ Ls+e

and thus 4 1is forcing.

We end this section by introducing a particular forcing
function that we shall use frequently in léter chapters.
Let g:D C'X - R be a functional with a uniformly continuous

Frechet derivative g' in D and define

v

(1.1.7) 5(t) = inf{|ju-v]:u,v € D;illg* (W -g' (V)| = ¢}
for 0= t=T = sup{llg' (u-g' (v)]]:u,v € D}. For a given

¢ > 0, the uniform continuity of g' implies that there is
6' such that

(1.1.8) lu-v|| < &' implies jig'(u)-g' (V)| < ¢ :

hence, 6(e) as defined by (1.1l.7) is the largest value of
8' such that (1.1.8) holds. Further & 1is a non-decreasing
function and by the uniform continuity of g°', §(t) > 0 for
t > 0. Thus & is a non-decreasing forcing fun¢£ion. The
function & is essentially the inverse of the modulus of
continuity of g' defined by

(1.1.9) w(t) = supllg' (W) -g' (v)|:u,v € D, |ju-v] = t}.

1.2 Convexity, Monotonicity and Positive Definiteness.

We next examine the relationship of convexity of a functional
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monotonicity of its derivative, and positive definiteness of
its second derivative.

A functional g:D < X - R is convex in some convex set
D, € D if for all u,v € Do and all t € [0,1],
(L.2.1) g(tu +(1-t)v) = tg(u)+(1l-t)g(v).

g is strictly convex if for u #v and t € (0,1),

(1L.2.2) g(tu +(1-t)v) < tg(w)+(l-t)g(v).

g is uniformly convex if for some non-decreasing forcing

function 4,

(1.2.3) g(tu +(1-t)v) =

td((l—t)Hu—vH)}
(1-t) a(t]ju-vl|)

tg(u)+(l-t)g(v) - Hu—vaaX{
The definitions of convexity and strict convexity are
standard and classical; uniform convexity does not seem to

have been defined until now although Poljak [34] defines a

functional to be strongly convex when

(1.2.3")  g((u+v)/2) = %g(uw) + %g(v) - %cllu-v|®,
for ¢ > 0.

We recall next the concept of a monotone mapping. If
g:DC X - R has a Gateaux derivative g', then g’ is

monotone on D if for all wu,v € D

v
o

(1.2.4) (g' () =g' (v)) (u-v)

g' is strictly monotone if for u # v,

(1.2.5) (g' (u) =g' (v)) (u~-v) > 0.
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g' is uniformly monotone if for some non-decreasing forcing

function d,

(1.2.6) (g' (w) = g* (v)) (u-v) = llu=vi|da(|ju=-vl]).
Monotonicity has been defined in more generality for

mappings G:D € X = X* by Zarantonello [45] and exploited

by various authors. Our definition of uniform monotonicity

is a.slight generalization of what is usually called strong

monotonicity: (d(t) = ct, ¢ > 0)

(1L.2.6") (g' (u) - g(v)) (u-v) = cfju-v|®.

We see immediately that uniform convexity implies strict
convexity which in turn implies convexity. Likewise, uniform
monotonicity implies strict monotonicity which implies mono-
tonicity.

For functionals g with Gateaux derivatives which are
continuous on line segments, we show below that convexity (re-
spectively, strict convexity or uniform convexity) is equiva-
lent to monotonicity (respectively, strict monotonicity or
uniform monotonicity) of g'. These results, although elemen-
tary; appear to have been overlooked in the literature until
recently. Minty [26] showed that convexity of g implies
monotonicity of g'. This is done for a topological vector
space and a generalization of the Frechet derivative. Poljak

[34] states without proof the equivalence of (1.2.3') and

(1.2.6'). For completeness we prove the following although
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only the equivalence of the "strict" statement seems to be
entirely new.

Theorem 1.2.1. Let D be an open convex subset of a

real Banach space X, and assume g:D C X - R has a Gateaux

derivative that is continuous on line segments in D. Then:

(a) g' is monotone in D if and only if g is convex in D,

(b) g' is strictly monotone in D if and only if g is
strictly convex in D,

(¢) g' is uniformly monotone in D if and only if g is
uniformly convex in D.

Proof: From the mean value theorem, (1.1.4)
g(u) -g(v) = J:[g'(V+6(u-V))(u-V)]d6
and
g (v+a (u-v)) -g(v) = f:[g'(V+9a(u-V))(a(u—V))]d6
so that

g (qu+ (l-o) v) ~ag(u) - (1) g(v) =

afl[(g'(v+6a(u-v))—g'(v+6(u—v))](u~v)de =
o

o Jl[q'1v+eaiu—v))— g' (v+6 (u-v)) ] [v+6& (u~v)=v+6 (u-v) 1d8
a-1%° 8

If g' is monotone the integrand is non-negative and g
is convex. If g' is strictly monotone the integrand is pos-
itive and g 1is strictly convex. When g' satisfies (1.2.6)
we have  g(giut(1-a)v) - (eg(w)+(l-a)g(v)) =

1 .
o | (I8 (@=1) (u-v)||-a(|l (¢=1) (u-v)|])as
1-g*°
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and thus
ag (W) + (1=-a)g {v) = g(au+r (1-a)v) = aflu-v|[d((1-a) lu-v])

where

rl

d{t) = | a(te)ads.

v o

If we set B = (l-w) and interchange the roles of u and

v we have

Bg(v)+(1-B)g (u) - g(Bu+ (1-8)v) = gilu-v[[a(1-8) [lu-vl]).
Since d is non-decreasing and satisfies d(t) > 0 for
t > 0, 3 has these same properties. Hence (1.2.3) holds
and g is uniformly convex.

Conversely, if g 1is uniformly convex and 0 < o < 1,

(1.2.3) yields

_g(V+a(u;V))-g(V) s gla) - g(v) = |u-v]la(1l-e) |u-v]]).

Now let « tend to zero. Since g 1is differentiable at
v and d 1s a non-decreasing function, we conclude that
(1.2.7) g' (v) (u-v) = g(u) - g(v) - fu-vlla(fu-vi}.
Interchanging the roles of u and v in (1.2.7) and adding

the result to (1.2.7) we have

iV

lg' (0)-g' (v) J(u~-v) = 2|u-v|d(|u-v]).

Thus if g is uniformly convex, g' is uniformly monotone

and with d set to zero this also shows that convexity of
g ‘implies monotonicity of g'. If g 1is strictly convex

and u# v we let w= %(u+v) and obtain
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g' (u) (v-u) = 2g' (u) (w-u)
= 2[g(w) -g(u)]
< 2[%g(v) - kgul.
Thus

g' {u) (v=u) < g(v)- g(u)
and we conclude the strict monotonicity of g'.

We note that in the course of the proof we have actual-
ly obtained the following basic differential inequalities
which hold without any continuity assumptions on g':

(1) g 1is convex if and only if
(1.2.8) g' (v) (u=v) = g(u)- g(v) = g' (u) (u~-v);

(ii) g dis strictly convex if and only if for u # v
(1.2.9)  g'(v) (u-v) < g(u)=- g{v) < g*(u) (u-v);

(iii) g 4is uniformly convex if and only if for some non-
decreasing forcing function d

(1.2.10) g'(v) (u-v) = g(u)- g(v)~ llu=-vijd(jlu-v])).
Corresponding to convexity for the functional and mono-
tonicity for the first derivative is positive definiteness
of the second derivative. Again we have a three part defini-
tion.
Let Y Dbe the collection of all bilinear mappings from

X xX to R. Amap A:Dc X =Y 1is positive definite in

D if for all u €D and h € X

(1.2.11) A{(uyhh = 0.
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A is strictly positive definite if for h # O

(1.2.12) A(u)yhh > 0.

A 1s uniformly positive definite if for some ¢ > 0,

(1.2.13) A(whh = clnl®.

This nomenclature is slightly non-standard. The first
concept is usually called non-negative definite or positive
semi—definite and the second is called positive definite,
Note that we cannot generalize uniform positive definiteness
in a manner analogous to uniform monotonicity and uniform
convexity by means of an arbitrary non-decreasing forcing
function. A(u) is by definition a bilinear operator and must
act quadratically on h. Observe also that if D is compact
and A 1is continuous then strict positive definiteness of A
in D implies uniform positive definiteness of A in D.
Since the converse is always true, strict and uniform positive
definiteness are equivalent for continuous operators on com-
pact domains. We next give the relationships between mono-
tonicity of g' and positive definiteness of g".

Theorem 1.2.2. Let g:D < X - R have a second Gateaux

derivative that is continuous on line segments on D. Then:
(a) g" is positive definite if and only if g' is monotone.
(b) If g" is positive definite and strictly positive defi-

nite except perhaps on a set which contains no line
segments then ¢' is strictly monotone.
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(¢) g" is uniformly positive definite if and only if g' is
uniformly monotone with a linear forcing function.

Proof: From the mean value theorem, (1.1.5),

1
(g* (u) =g' (V) (u-v) = jo[ g" (tv+ (1-t)u) (u-v) (u-v)Jdt.

If g" is positive definite the integrand is non-negative
and thus g' is monotone. If u # v and g" is positive
definite and strictly positive definite except perhaps on a
set containing no line segments, then g" is strictly posi-
tive definite at some point of the closed interval [u,v].
But g" is continuous on line segments and is therefore
strictly positive definite on some sub-interval of [u,v].
Therefore the integrand is positive and g' is strictly mo-
notone. If g" is uniformly positive definite the integrand
is greater than c|lu-v||® for some ¢ > 0, and g" is uni-
formly positive definite.

Conversely if

(g' (W) =g" (V) (u-v) = cllu-v||®

then for h € X, u € D, and any t # 0,

{g' (u+th) =g* (w))th _ cllth|®
t2 = t?

and letting t approach zero we have by the differentiabil-
ity of g',
g"(uWhh = clhi|?®,

so that g" is uniformly positive definite. If we set
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¢ = 0 this shows that g" is positive definite when g' is
monotone.

The converse of (b) is not true as the example, x5 + x5,
shows. This functional is strictly convex and thus has a
strictly monotone derivative. But the second derivative is
singular on the line x; = 0 and therefore is not strictly
positive definite.

Part (a) of the theorem is a classical result. We note
that the statement and proof of the entire theorem extend
immediately to differentiable mappings G:D € X = X*, where
G 1is not necessarily the gradient of a functional.

1.3 Pseudo-Convexity and Quasi-Convexity. A functional

g which has a Gateaux derivative g' on an open subset D

of a Banach space is pseudo-convex if for all u,v € D

(1.3.1) g(u) < g(v) implies g'(v) (v=-u) > 0.

g is strictly pseudo-convex if for u A v

(1.3.2) g(u) = g(v) implies g'(v) (v-u) > O.

g is uniformly pseudo-convex if for some non-decreasing

forcing function 4

(1.3.3) g(u) = g(v) implies g' (v) (v-u)Z |lu-v||d(|lu-vl]).
The concepts of pseudo-convexity and strict pseudo-

convexity are due to Mangasarian [ 25] while that of uniform

pseudo-convexity is apparently new. Note that differentia-
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bility is necessary for the definition of pseudo-convexity
(but see Nashed [ 28] for the notion of supportable convexity
which seems to be a natural generalization of pseudo-
convexity). On the other hand, it is not necessary that a
pseudo-convex function be defined on a convex set.

An important property of pseudo-convex functionals is
that critical points are minima. The following is essential-
ly due to Mangasarian [ 25].

Theorem 1.3.1. Assume that the functional g is Ga-

teaux differentiable on an open set D C X and let H bDe a
linear subspace of X. If g 1is (strictly) pseudo-convex on
D and for some x € D, g'(x)h = 0 for all h € H, then g
attains a (unique) minimum in D N I at x, where I is the
affine subspace {x+h:h € H}.

Proof: Suppose z € DN f and g(z)< g(x). Then
pseudo-convexity of g implies that g'(x) (x-z) > 0 which,
since x-z € H, is a contradiction. Similarly, if g(z) =
g(x) and x # z, we obtain the same contradiction if g 1is
strictly pseudo-convex.

Corollary 1. Let u € D, e # 0 and define f£(t) =

g(u-te) for t such wu-te € D. If g' (u-tpe)e = 0 and g
is (strictly) pseudo-convex on D, then £ takes on a

(unigque) minimum at to.
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Corollary 2. If g is (strictly) pseudo-convex on D

and g'(x) = 0, then g attains a (unique) minimum in D at

X.

We show next that each form of pseudo-convexity is weak-
er than the corresponding form of convexity.

Theorem 1.3.2. Suppose g has a Gateaux derivative on

an open convex subset D of a Banach space. If g is con-
vex (respectively, strictly convex or uniformly convex) on D
then g 1is pseudo-convex (respectively, strictly pseudo-
convex or uniformly pseudo-convex) on D.

Proof: When g 1is convex, strictly convex or uniformly
convex ¢g' satisfies by (1.2.8),(1.2.9) or (1.2.10) respec-

tively either

v

(1.3.4) g' (v) (v-u) 2 g(v)- g(u),
{1.3.5) g' (v) (v=u) > g(v)=- g(u),
or for some non-decreasing forcing function d
(1.3.6) g' (v) (v=u) 2 g(v)~ g(u) + [lu-v{la(flu-vi).
If g(u) = g(v) these relations immediately imply that g is
pseudo-convex, strictly pseudo-~convex or uniformly pseudo-
convex respectively.
It is immediate that a convex functional has convex lev-

el sets, (that is, {x€D:g(x)= c} is convex for any c) but

the converse is not true. This leads to the well-known (see
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e.g. Fenchel [10]) definition of a guasi-convex functional
as one whose level sets are all convex. Equivalently, we
'may define guasi-convexity as follows.
A functional g mapping a convex subset D of a Banach

space X into R 1is guasi-convex if for all wu,v in D

and all w in the open interval (u,v)
(1.3.7) g(u) = g(v) implies g(w) = g{(v).

g is strictly guasi-convex if for u # v,

(1.3.8) g(u) =2 g(v) implies g(w) < g(v).

g is uniformly guasi-convex if for some non-decreasing for-

cing function d

(1.3.9) g(u) = g(v) implies g(v) Z g(w) +

. lu-wlla (flu-w])
min i“v-w“d(“v—w“)}'.

While the definition of quasi~convexity is standard we
differ with Mangasarian [25] and Ponstein [35] on the defin-
ition of strict quasi-convexity. Their definition of strict
quasi-convexity (which we will call semi-strict guasi-convex-
ity in the next section) does not, as (1.3.8) does, imply the
uniqueness of a minimum of g. Poljak [34] has also given
definitions of strict and uniform guasi-convexity which are

equivalent to ours when the functional is lower semi-continu-

ous.
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We have immediately, that uniform guasi-convexity im-
plies strict quasi-convexity which implies quasi—convexity._
Furthermore, each kind of quasi~-convexity is a consequence
of the corresponding kind of pseudo-convexity.

Theorem 1.3.3. Let g have a Gateaux derivative that

is continuous on line segments in an open convex subset D
of alBanach space. If g is pseudo-convex (respectively,
strictly pseudo-convex or uniformly pseudo-convex) then g
is guasi-convex (respectively, strictly qguasi-convex or uni-

formly quasi-convex).

A

Proof: Assume for u # v that g(u) g(v). Let w
belong to the open interval (u,v) and let x be the minimum
of g on the closed line segment [u,v]. (g is continuous
and [u,v] is compact so that the minimum is attained.)
Choose z as u or v so that w Dbelongs to the line seg-
ment (z,x). By the mean value theorem, (1.1.4),

g(z)- g(w) = f:g' (wit(z-w)) (z-w) dt
and thus, since g(z) = max{g(u),g(v)} = g(v),
(1.3.10) gv)- g(w) = Jr:g' (wtt(z-w)) (z-w) dt.
But z-w is a positive multiple of w+t(z-w)- x and thus
the sign of g'(w+t(z-w)) (z-w) is the same as that of

g' (wtt(z-w)) (w+t(z-w)-x). Since g(x) = g(w+t(z-w)), pseudo-

convexity implies that the integrand of (1.3.10) is non-~
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negative and hence g 1is quasi-convex; likewise strict
pseudo-convexity implies the integrand of (1.3.10) is posi-
tive and hence g is strictly quasi-convex. If g 1is uni-

formly pseudo-convex the integrand satisfies

_ g' (w+t (z-w)) (w+t (z-w) =x) (llz-wl]])
- |w+t (z-w) - x||

ad(lwtt (z-w) = %) Jw+t (z-w) - x|

lw+t (z-w) - x||

g' (wtt(z-w)) (z-w)

- |z-wl|

IV

d(ft(z-w)+ w-x|) || z-w]|

IV

a (||t (z=w) ||+ [lw=x]]) || z-w||,
so that

g(v)- g(w) = a(||lz-w|) ||z-w|,

where E(t)Ej d(t6)dé. As 2z may be either u or v we
)

have
ra(fu-wl [a-wl
T =560 = min {500 L) fv-wl)

and as d is a non-decreasing forcing function this implies
d 1is a non-decreasing forcing function. Hence g is uni-
formly guasi-~convex.

The relationships derived in Theorems 1.3.2 and 1.3.3

are summarized in Figure 1.3.1.

ucC = UPC = uQC
4 4 4
scC > spC = sQC
U 4 U
c = PC = Qc

Figure 1.3.1 Relationships between various kinds of convexity.
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There are a number of other formulations of quasi-con-
vexity. Poljak [34] uses the mid-point formulation: For

u,v € D

1A

(1.3.11) g(u) 2 g(v) implies g(2235 g(v).

Newman [29] and Wilde [44] each generalize a concept of

Keifer [23] to n dimensions and call it unimodality and

linear unimodality respectively. Their definition is equiv-

alen£ to what we call strict unimodality below and turns out

(Theorem 1.3.5) to be equivalent to strict quasi-convexity.
A functional g¢g:D < X - R, defined on a convex domain

D is unimodal if, for any closed interval [u,v] © D we

have g(u) = g(w) Zz g(x*) where x* is the minimum of g

on [u,v] and w is any point in the open interval (u,x*).

g is strictly unimodal if g(u) > g(w) > g(x*) when u # x*.

We have already noted that quasi-convexity is equiva-
lent to convexity of level sets. Other equivalences are
given in the next theorem. We recall that a lower semi-
continuous functional satisfies iig igf g(x) = g(x*), and
takes on a minimum on any compact set.

Theorem 1.3.4. Let g Dbe a lower semi-continuous func-

tional defined on a convex subset D of a Banach space.
Then the following are equivalent:

(a) g is gquasi-convex;
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(b) g 4is unimodal;

-

(¢) for any wu,v € D, g(u) = g(v) implies g(BEX)

=

g(v);

(d) for every real ¢ the set 5, = {u:g(u)<c} is convex.
If g 1is continuously differentiable the following are also
eugivalent to quasi-convexity:

(e) for any wu,v € D

g(u) = g(v) implies g'(v) (v-u) = 0;
(f) for any u,v € D
gu) < g(v) implies g'(v) (v-u) = 0.

Proof: (a)=(b). Let x* be the minimum of g on
[u,v] and w € (u,x*). Then g(x*) = g(w) and g(x*) = g(u).
The last inequality and cuasi-convexity imply g(w) = g(u).

(b)=(c). Assume g(u) = g(v). Let x* De the minimum of

+ +
g on [u,v]. If x* = EEX we are done. If not, EEy"belongs

to {u,x*) or (v,x*) and thus g(E%z) is less than g(u) or

U+v

5 ) = g(v)y. (o)=(d).

g(v) respectively. In either case g
If u,v € Se, then max{g(u),g(v)} < c¢. We prove by induction
on 1 that the points wj,§ = j2_lu+(l—j2—l)v,(O§j§2i;i=0,l,..)

satisfy g(wi ) = max{g(u),g({v)}. When i = 0 the result is

. ]

clear. Now assume g(wj+, 6 §) = max{g(u),g(v)} for i' = i;

there then are two cases to consider for i. When Jj 1s even,
W 5 is also the point W, _y L and by the induction hypothe-
’ ’

sis g(wi,j) = max{g(u),g(v)}. When 3 is odd, Wi,y =

(wi—l,%j—l + wi—l,%j+l)/2 and the induction follows from (c).
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The set G = {wi’j:O = 4§ = 2i; i=0,1,..} is dense in (u,v)
and any point w of (u,v) is therefore the limit of some se-
quence of points in G. But the value of g at each point
in G is less than or equal to max{g(u),g(v)} and by the
lower semi-continuity of g, g(w) = max{g(u),g(v)} < c.

()= (a). Let wu,v € D, g(u) = g(v), w € (u,v) and assume
that g(w) > g(v). Then u and v both belong to Sg(w)'

implies w € S which is a contradic-

g (w) g(w)

tion. Thus g(w) = g(v). The equivalence of (a), (d), (e)
and (£f) was proved by Ponstein [35] in finite dimensions
under the condition that g 1is continuously differentiable.
Since his proof of the equivalence of (a), (e) and (f) goes
over verbatim to a Banach séace we do not repeat it here.

Poljak[34] states equivalence of (c)land (a) for lower .
semi-continuous functionals. The recognition that unimodal-
ity and quasi-convexity are related seems ﬁo have gone un-
noticed until now.

We next consider equivalent formulations of strict
quasi-convexity. As we might expect strict quasi-convexity
is equivalent to strict unimodality and strict mid-point
quasi-convexity when the functional is lower semi-~-continuous.

Theorem 1.3.5. Let g be a lower semi-continuous func-

tional defined on a convex subset D of a Banach space.
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Then the following are eqguivalent:

(a) g 1is strictly gquasi-convex;

(b) g is strictly unimodal;

(¢) for wu,v €D, g(u) = g(v) implies g(E%z> < g(v).

Proof: We note that (a), (b) and (c) each imply g is
quasi-convex. For quasi-convex functionals i1f there is some
w in the open interval (u,v) such that g(u) = g(w) = g(v)
then g is constant either on the interval [u,w] or on the
interval [w,v]. For if g were not constant in either we
could find x' in [u,w] and x" in [w,v] such that g(x') <
g{w) and g(x") < g(w). Hence, g{w) is strictly greater than
the maximum of g(x'), g(x") even though w € [x',x"]. This
contradicts guasi-convexity. Now assume (a) holds. To prove
(b) assume that x is the minimum of g on the interval
[u,v] and that x is not equal to u. g is quasi-convex,
hence unimodal, and for any w in the open interval (u,x),
g(u) =z g(w) z g(x). We need only show each of these ineqgual-
ities is strict. If g(u) = g(w) then as noted above g 1is
constant on a subinterval. But a strictly quasi-convex func-
tion cannot be constant on a subinterval. If g(w) = g(x), then
by quasi-convexity any w' in (w,x) satisfies g(w') < g(x)
which contradicts the definition of x. Now assume (b),

u+v,

and for u #v set w = 5 - By the quasi-convexity of g
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we know that g(w) = max{g(u),g(v)}; therefore we wish only to
show that the equality is strict. But if we had equality we
could conclude g was constant on some line-segment and thus
contradict strict unimodality. As similar argument shows (c)
implies (a). If we had equality, i.e., g(w)= max{g(u),g(v)},
for some w in the open interval (u,v), u # x then we would
have g constant on a line segment and this contradicts (c).
This completes the proof.

Strictly quasi-convex functionals have the property that

if a minimum exists, it is unique. In the next section we

“give a geometric interpretation of strict quasi-convexity.

1.4 Strict and Semi-strict Quasi-convexity. We noted

in the last section that quasi-convexity was equivalent to
assuming all level sets are convex. Our next objective is

to give geometric conditions, in terms of level sets, for a
functional to be strictly guasi-convex, and to discuss anoth-
er kind of convexity which is intermediate between quasi-
convexity and strict quasi-convexity. We show that function-
alé with this property, which we call semi-strict quasi-
convexity, are characterized among continuous quasi-convex
functionals by the fact that every local minimum is a global
minimum.

We begin with the following lemma:
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Lemma 1.4.1. Let C Dbe a convex subset of a Banach

space.
(a) If u € C and v is an interior point of C then
every point w of the open interval (u,v) is an

interior point of C.

(b) If wu,v € C then the open interval (u,v) contains
only interior points or only boundary points.

Proof: (a). If v 1is an interior point of C then
there is a sphere S of radius e about v that is con-
tained in .C. Let w Dbe any point of the open interval
(u,v) and o Dbe that positive number such that o (u-v) =
(u-w) . Then the sphere of radius '@we about w 1is in the
convex hull of S U {u}] and thus in C. Therefore w is an
interior point of C. (b) follows easily from (a).

We next introduce some notation and terminology. If

g:Dc X - R, set L, = {u € D:g(u) = ¢}, Eq = {u € D:g(u)= c}

and B, equal to the boundary points of L.

Definition 1.4.1. The functional g has property S

if for any ¢, E, contains no line segments, (i.e., if u,v €

E. then there exists to, € (0,1) such that tou + (l-tg)v £

Ec.)

-

Definition 1.4.2. A set S 1is strictly convex if for

~any two points u # v on its boundary the open interval

(u,v) contains only interior points of S.
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In view of Lemma 1l.4.1, a set S is strictly convex if
and only if for any two points u # v in its closure the
open interval (u,v) contains only interior points of S.

Theorem 1.4.1.. Let g Dbe a continuous functional de-~

fined on a Banach space X. Then the following are equiva-
lent:

(a) g is strictly guasi-convex;

(b) g is guasi-convex and has property S;

(c) the level sets L, are strictly convex and Eg & B,
for all c.

Proof: Assume (a); g is clearly quasi-convex sSo we
need only prove g has propevcy S. If E, contained a line
segment, g would have constant value c¢ on the segment.

But this is impossible for strictly quasi-convex functionals.
Thus g has property‘ S. Now assume (b), and let u,v € B,.
L. is closed and therefore u and v Dbelong to Lg. By
Lemma 1.4.1, if (u,v) contained any boundary point it would
contain only boundary points. But this interval of boundary
points would by continuity lie in E_, and this contradicts
property ©S. Hence Lc is strictly convex. To prove Eg
contains only boundary points of L, assume initially that

g is not constant on L, and thus there is some u € Lg

such that g(u) < ¢. If Eg had an element w that was an
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interior point of L then the line segment [u,w] would have
a proper extension [u,v] lying in Lg. But g(u)< g(w),
g(w)2 g(v) and quasi-convexity of g would then imply g

is constant on the line segment [w,v]. This however contra-
dicts property S, and E_ can therefore contain no interior
points of L,. In the case where g is constant on L,

we have E_ =L

c e+ If L, contained two distinct points

u # v then by the convexity of Lc the entire interval [u,v]

would belong to LC and hence to E Again this contradicts

c*

property S. Finally assume (¢); if u # v, and g(u) = g(v)

and w € (u,v) then by the strict convexity of Lg(v),we have
g(w) 2. g(v) and w is an interior point of Lg(v)' But
B contains no interior points and thus g(w) < g(v).

g (v)

We note that although the theorem was proved only for
functionals defined on the entire space the result still
holds for functionals defined on a convex set D provided
that all topological notions are interpreted in the relative
topology for D. In particular the notion of a boundary used
in the definitions of B_ and of a strictly convex set must
be relative to D.

Corollary 1. If g is pseudo-convex and has property

S then g 1is strictly pseudo-convex.

Proof: By Theorem 1.3.3 pseudo-convexity implies
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quasi-convexity and by the previous theorem this and proper-
ty S 1imply strict quasi-convexity of g. If g(u) = g(v)
then by the strict quasi-convexity, for any w in {(u,v),
g(w) < g(v). This and pseudo-convexity imply g' (v) (v-w)> 0.
Multiplying by ||v-ull/||v-w| gives g' (v) (v-u) > 0, and thus
g 1is strictly pseudo-convex.

| Mangasarian [ 25] and Ponstein [ 35] have considered the
condition: - for wu,v € D, D convex, and Ww € (u,v)
(1.4.1) g(u) < g(v) implies g(w) < g(v),
and they call this strict quasi-convexity. This condition
is clearly weaker than what we have called strict quasi-
convexity and implies quasi-convexity when g is lower semi-
continuous. We therefore define:

Definition 1.4.3. A function g defined on a convex

set D is semi-strictly quasi-convex if for u # v, u,v € D

and w € (u,v), (1.4.1) holds.

Theorem 1.4.2. Assume g 1is semi-strictly quasi-convex

and lower semi-continuous in a convex set D. Then g is
guasi-convex in D.

Proof: From (l.4.1) and (1.3.7) we need only show that
for u,v € D and w € (u,v), g(u) = g(v) implies g{(w)= g(v).
Assume, to the contrary, that g(w) > g(v) and let w' # w

belong to (u,v). Then (1.4.1) implies g(w') < g(w). 1In
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fact, g(w') = g(v), for if g(w*') > g(v) = g(ﬂ) and w was
in, say, (u,w') then (l1.4.1) would imply g(w) < g(w') which
is contrary to what we have just shown. Thus g(w') = g(v)
on the entire closed interval [u,v] with the exception of the
point w. But g is lower semi-continuous and thus g(w) =
g(v). Hence g is quasi-convex.

In Theorem l1l.4.1 we showed that strict quasi-convexity
was equivalent to assuming, for all ¢, that

(1.4.2) Ec C B

c ¢
and that the level sets L, are strictly convex. We show
next that semi-strict quasi-convexity is equivalent to as-
suming that the level sets L, are convex and that (1.4.2)
holds for ¢ # min{g(u):u € D}. As with the previous theo-
rem we will prove the result only for functionals defined on
the entire space and note that an extension is possible for

functionals defined on a convex domain.

Theorem 1.4.3. A continuous functional g 1is semi-

strictly quasi-convex if and only if for all ¢, L, is con-

vex and either EC C B, or E, = L..
Proof: Assume g 1is semi-strictly quasi-convex. By
Theorem 1.4.2 g 1is gquasi-convex and thus has convex level

sets. We will show that if E_ contains an interior point

of Lc then g 1is constant on Lg and therefore L. = E..
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Let w Dbe an interior point of L, such that g(w) = ¢, and
let u be any other point of Lc‘ The line segment [ u,w]
has a proper extension [u,w] < [u,v] © L. for some v £ w

in L, and if g(u) # g(v), say g(u) < g(v), then semi-

HA

strict quasi-convexity implies g(w) < g(v) c. But this
is a contradiction and thus g(u) = g(v). The quasi-convexity
of g then implies ¢ = g(w) = g{u) = ¢. Thus g{u) = ¢ and
since u was arbitrary, g must be constant on L.-
Conversely if every level set is convex then g 1is
quasi-convex and for all u,v and w € (u,v)
g(u) < g(v) implies g(w) = g(v).
To complete the proof we need only show that g(w) # g(v).

If g(u) < g(v), then g is not constant on Lg(v) and thus

Eg(v) is equal to the set of boundary points of Lg(v) - If

w wisbahy point of the interval (u,v) then Lemma 1l.4.1 shows
that w 1is an interior point. Thus w does not belong to
Eg(v) and therefore g(w) # g(v).

Ponstein [ 35]) has shown that a local minimum of a semi-
strictly quasi-convex functional is at the same time a global
minimum. We would like to show that in some sense this char-
acterizes them. The next theorem says that among the class
of continuous quasi-convex functionals the set of semi-strict

quasi-convex functionals are precisely those for which every
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local minimum is a global minimum.* Again we prove the re-
sult only for g defined on the entire space but note that
an extension to g defined only on a convex set is possible.

Theorem 1.4.4. Suppose that g 1is continuous on the

Banach space X. If g 1is semi-strictly quasi-convex then
any local minimum is a global minimum. Conversely, if g
is guasi-convex and any local minimum is a global minimum
then g is.semi-strictly gquasi-convex.

Proof: Suppose u is a local minimum of g but there
is some v such that g(v) < g(u). Then any point Ww on
the line segment (u,v) satisfies g(w) < g(u) and u is not
a local minimum. Conversely, by Theorem 1.4.3, it is suffi-

cient to show that whenever E_ contains an interior point

of L, then E, = L., i.e., g 1is constant on L.. Therefore
we assume U 1s an interior point of Lc and g(u) = c¢. Set
S, = {x|g(x)<c} and assume that S, is not empty. Then by

continuity, Sc is open and since u g S5, the separation theo-
rem for convex sets in a linear topological space (see, e.g.,
Dunford - Schwartz [ 9]) gives a continuous linear functional
f such that f(x) < a for x € Sc and f(u) = a. joreover,
since u is an interior point of L  the line segment [v,u]

has a proper extension [v,u'] in L. i.e., [v,u]l € [v,u'] c

*B. Martos has independently obtained essentially this
result working in finite dimensions (private communications).

|
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Le u' # u, such that f£(u') > a and by Lemma 1.4.1, u'
may be chosen as an interior point of L_. Since £ is
continuous there is a neighborhood N C Lo of u' such that
f(w) > a for w € N. Therefore N contains no points of
Sc and N must be a subset of E_,. This implies u' is an
interior point of EC and is thus a local minimum of g. By
the hypothesis u' is a global minimum of g and hence g

is constant on L.




CHAPTER II

DIRECTION ALGORITHMS

2.1 Introduction. The purpose of this chapter and the

next is to provide a unified convergence theory for itera-
tive minimization of (generally non-quadratic) functionals.
Simply stated the problem is when will an algorithm produce

a sequence {uY}, satisfying
1
(2.1.1) up+ = uP- t ep, t
p b

which converges to a minimum of a given functional g or a

v

o, 1P| =1, p=0,1,... .,

solution of g'(x) = 0. (By a minimum of g we mean, of
course, a point at which g attains its minimum value.) We
approach this through the related problem of proving that
g'(up)~ 0, and hence, at the outset we discuss when g'(up)~ 0
impliesvthat the seguence {up} converges, either to a solu-
tion of g'(u)= 0, or to a minimum of g. Then, in two steps
we shall study when g'(up) tends to zero. These two steps
reflect a natural division in the problem, since any minimi-
zation algorithm can be thought of having two tasks--picking
the next direction ep and choosing the distance (or step-
size)tp. In the next chapter we will analyse a number of
step-size algorithms with the object of showing that a suit-
able choice of step-size implies g'(up)ep~ 0. In this chap-

ter, under the assumption that g'(up)ep tends to zero, we

consider various methods of choosing the sequence of directions

36
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P

and demonstrate that they yield iterations for which
g'(up) tends to zero.

| One obvious advantage of separating the analysis of
step-size and direction is that any suitable step-size may
then be combined with a suitable direction and our results
will therefore apply to a great many algorithms.

The underlying space used in this chapter will be the
real n-dimensional Euclidean Space E" with |x|| = (in)%,
although the results extend easily to other norms, and in
many instances (particularly for the gradient-related direc-
tions of section 2.3) extensions are possible to an arbi-
trary Banach space.

Before we begin the analysis let us consider two exam-
ples of iterative minimization algorithms. Perhaps the best
known algorithm is the method of steepest descent, first pro-
posed by Cauchy [ 5] in 1847. Suppose g:En~ R is a Gateaux
differentiable map. The method of steepest descent uses the
gradient direction:

(2.1.2) = g (P 1/ lg (D),
and a step-size tp satisfying
(2.1.3) g (uP- tp ) = min g(uP- teP),

tz0
to obtain
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Intuitively, we choose the direction of local maximum de-

crease of the functional and then from among all points in
this direction select one for which the value of the func-
tional is least.

Another minimization algorithm is the Gauss-Seidel meth-
od. Again suppose g:En~ R is Gateaux differentiable and
let ep,€3;,...:€n-1 be the n orthonormal coordinate vec-
tors of Ep; then the Gauss-Seidel directions are given by
(2.1.4) eP = sgn(g'(up)ei)ei , i = p(mod n).

Thus the direction sequence consists of the n coordinate
vectors repeated cyclically. (The signs are chosen so that
g'(up)ep z 0 and thus tp is positive.) The step-size may
be determined, for example, by letting tp be the smallest
non-negative solution if it exists, of

(2.1.5) _ g' (uP- tp eP)ef = o,

. . . +1
and the next iterate is given by W= WPt ep.

P
In these algorithms, the choice of step-size and direc-
tion are independent. Thus a step-size tp defined by
(2.1.5) could be used with the directions satisfying (2.1.2).
Indeed, this combination was proposed and analysed by Curry
[ 7]. Moreover, if tp is defined by (2.1.3) and &P by

(2.1.4) we have a variant of the Gauss-Seidel algorithm.

Note that tp given by (2.1.3) is also a non-negative solu-
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tion of g'(up— tep)ep =0 and if g has a strictly posi-
tive definite second derivative both distance choices coin-
cide.

The name Gauss-Seidel is usually associated with a
method of solving a system of simultaneous equations in
which one treats the equations cyclically, solving the ith
equation for the ith unknown with the remaining variables
fixed and immediately substitute the solution for the old
estimate of that coordinate. In applying the Gauss-Seidel
algorithm to a functional g, we are carrying out precisely

this procedure on the equation g'(x) = 0.

2.2 Convergence of the Iterates. Even if we know that

g'(up)~ 0 the problem of proving convergence of the sequence
{up} produced by a minimization algorithm is still an open
qﬁestion for arbitrary g¢g. (For some partial results see
Ostrowski [ 33].) However, under the assumptions that

g'(u) = 0 has a unigque solution, that {up} lies in a com-
pact subset of D, and that g:D < E'» R is continuously
differentiable, it is easy to show that the sequence {up}
converges. For, from the compactness, the sequence will
have limit points in D; from the continuity of g' these

limit points will be solutions of g'(u) = 0; and if there

is a unique solution, then the sequence converges. Nonethe-
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less, the requirement that g'(u) = 0 have a unique solu-
tion 1s restrictive. A stronger result, due to Ostrowski,
is possible when Hup- up+lH -~ 0. For completeness we re-
produce the proof here.

Theorem 2.2.1. Let g:DC "~ R have a continuous de-

rivative on an open set D; suppose the sequence {up} is con-

tained in a compact set, Dy € D, and assume that g'(up)~ 0,

Pt L o

|uP- w , and the set {u:g'(u) = 0} consists only of
isolated points. Then the seguence {up} converges to a
limit x and g'(x) = 0.

Proof: The essential fact is that Hup—up+lHq 0 implies
that the set of limit points of the sequence {u’} is connec-
ted. To see this, assume that the set of limit points con-
sisted of two separated sets. We could then find disjoint
closed neighborhoods A and B of each of these sets and
A and B would have a positive distance € from each
other. But the sequence {up} must eventually lie in A U B
and |[uP- W) < ¢ for p sufficiently large. Therefore,
the sequence will eventually lie entirely in either A or
B. This implies that the other neighborhood could contain
no limit points of {vP} and the set of limit points of {u®)

must be connected. But the set of limit points of (WP} is a

subset of the set of solutions of g'(u)= 0 and the latter
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contains only isolated points. Thus the set of limit points
contains only isolated points; and, since it is connected, it
has precisely one point. Therefore the sequence {u®} con- |
verges.

2.3 Gradient-related Directions. In the next chapter

we will analyse a variety of methods for choosing step-size
with the objective of showing that these algorithms imply
g'(up)ep~ Q, p » @®. In the rest of this chapter we will an-
alyse when g'(up)* 0 under the assumption that g'(up)ep~ 0.
The direction algorithms we consider fall into two
classes--those that we think of as generalizations of steep-
est descent, and those that are generalizations of the Gauss-
Seidel directions. For steepest descent itself it is immed-
iate that g'(up)ep~ 0 implies g'(up)ﬂ 0 since ef =
g' (WPF/|lg' (\P)]| and this g' (WP)ef = |lg' (vP)||. The simpli-

city of this argument extends to the following class of di-

rections.

We say that a set of directions {ep} is gradient-related

" if there is a forcing function d such that

[\

(2.3.1) g (W) e z atljg' (P ).
(recall Definition 1l.1.1, d is forcing if d(t) = 0 and
d(tn) implies t - 0.) Clearly if the sequence (P} is

gradient-related and g'(u”)ef 0, then g (&®) ||~ o.
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One technique for obtaining a sequence {ep} satisfying

(2.3.1) is to define

& = alg @)1/ Na g (V)

p P

where {Ap} is a sequence of symmetric matrices satisfying

M|h||® = he Ap h 2 m}h}|®*, m >0, p=o0,1,...
Then, since HAth = M|h|| we have

g' (W) eP 2 (m/m) gt (uP) ]
and the sequence {ep} is gradient-related. This approach
has been exploited either explicitly or implicitly by sever-
al authors (see e.g., Nashed [27]). 1In particular if g
has a continuous bounded, uniformly positive definite second
Frechet derivative, i.e.,

M[h||® 2 g"(u)hh = w|n||®, Mz m> o0,
then Newton's method

WP WP - g (P 1M g (WP 1T
produces a gradient-related sequence of directions.

For gradient-related algorithms, therefore, it is immed-
iate that g'(up)ep~ 0 implies g‘(up)ﬁ 0 and the effort
is directed towards showing they are gradient~related. 1In
Chapter 4 we will give other examples.

2.4 Uniformly Linearly Independent Directions. In

contrast to steepest descent and Newton's method the direc-

tions of the Gauss-Seidel algorithm are not gradient-related
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and we therefore need another approach. The significant
feature of the Gauss-Seidel directions is that n successive
directions are orthogonal. In seeking to generalize this we
might consider requiring only that among m successive vec-
tors there are n that are linearly independent. This ap-
proach leads to difficulties if, as p - «, the directions
become "almost" dependent. We therefore define:

Definition 2.4.1. A sequence of vectors {ep}, with

|eP|| = 1, is uniformly linearly independent if there is some

mzZzn and c¢ > 0 such that for any p' and any x € E"

-y
inaa

i !XTep! z cf
p'+l = p E p'+m

(2.4.1)

It is easy to verify that uniform linear independence of a
sequence {ep} is equivalent to the requirement that there is
some c¢' > 0 such that from every m successive vectors we
may choose n of them which satisfy
|det(eP*,.....,ePn)| =2 c'.

The following theorems give sufficient conditions that,
for a uniformly linearly independent sequence of directions,
g'(up)~ 0 whenever g'(up)ep~ 0.

n .
Theorem 2.4.1l. Let g:D < E - R have a continuous

Frechet derivative on a compact set Dy < D. If, for a se-

quence (WP} <D, satisfying u

P uP - tp ep, the sequence of

vectors {e®} is uniformly linearly independent, g' (W) eP- 0,
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p = «, and tp -~ 0, p~ =, then g'(up)~ 0, p— =.

Proof: Let ¢ > 0 be given. Since g'

is uniformly

continuous on Dy the function 6 defined by (l1.1.7),

§(t)= inf {Hu-v”:u,v € DmHg'(U)-g'

satisfies 6(t) > 0 for t > 0. Therefore, because

i

("l

i.e.,

t},

[eP=aP ™ |+ 0

and g'(up)ep~ 0, we can find a XK sufficiently large that

(2.4.2) Hup— up+lH = §(kec)/m, p Z
and
(2.4.3) g'(up)ep = Lec, pZ

where m and ¢ are the constants of (2.4.1) in the defini-~-

K,

K,

tion of uniform linear independence. From (2.4.2) and the

triangle inequality it follows that
(2.4.4) || uP - up+lH s 6 (%ec) 1=
and then the definition of 6§ 1implies that

lg* (W) -g* (WP | = Lee, 1 =

1A

i m,

i = m.

Therefore for any vector e of norm unity, we have

Lec Z \[g'(up)—g'(up+i)]el z |g' (WP)e| - |g (up+i)elr

and thus
bec + gt (WP he] 2 |gr(Pel

It then follows from (2.4.3) that

eC = lg'(up)ep+il, l1=i=m, p

which, with the uniform linear independence of {e

that

z K

p}l

implies

{

4n 6 - ap T 9 an B .
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ec E max {[g'(up)ep+il} z cllg' (uWPy]],
1=i=m

and therefore for p z K we have |g'(d)| s e. But ¢
was arbitrary and hence g'(up)~ 0.
One of the hypotheses of Theorem 2.4.1 was the assump-

tion |uP- up+lH~ 0.

For several of the step-size algorithms
we will discuss in the next chapter, [|[u¥- W |-~ 0 follows
directly from their definition and g'(up)eP~ 0. On the
other hand, this is not true for other algorithms without
some additional assumptions about the functional, or about
both the functional and the algorithm. One such assumption
on the algorithm is that for some positive ¢ = 1,

(2.4.5) g(v®) = g(tuP+(1-0)u™) 2 Py, 0= £ = .
If tp is defined as the smallest non-negative solution of
g'(up- tep)ep= 0, for example, the mean value theorem implies
that (2.4.5) holds with ¢ = 1. We next show that if g has
property S and (2.4.5) holds then Hup- up+1H* 0, and we
may apply Theorem 2.4.1. Recall that a functional g Thas
property S (Definition 1.4.1) if for any u,v such that
g(u) = g(v) there is a ty € (0,1) such that g(tou+(l-ty)v)#
g(u), and that strict convexity, strict guasi-convexity and
strict pseudo-convexity of g all imply property S.

Theorem 2.4.2. If a sequence () lying in a compact

set satisfies (2.4.5) for continuous g with property S,
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then Hup; up+lH~ 0.

Proof: 1If Hup— up+1H # 0 we can find an ¢ > 0 and

a subsequence {u’J} such that ||WP3-uP3*'|| 2 €. Since the se-

quence {uPI} lies in a compact set we can find a possible

finer subsequence {u’3‘'} such that u’3'- x* and uP3'F'- xxx

and clearly then, ||x**-x*|| = ¢. But since g(uf™?)

A

g (u®)
we must have g(x*)= g(x**) and so by (2.4.5) and the contin-
uity of g,

‘ g(x*) = g(tx**+(1l-t)x*) = g(x**), 0 = t = c.
This, however, contradicts property S and hence Hup-up+lH~ 0.

For a number of the step-size algorithms discussed in

Chapter 3, (2.4.5) does not hold. However, the assumption of
strict pseudo-convexity about the functional allows another
approach.

Theorem 2.4.3. Suppose g 1is a continuously differen-

tiable strictly pseudo-convex functional defined on an open
set D and the sequence {up} lies in a compact set py & D

and satisfies g(up) z g(up+1) and g'(up)ep~ 0. Then

o= WP~ 0.

Proof: As in the proof of Theorem 2.4.2, if |[WP~uP™ |4 o,

then we can find a subsequence {upi} and points x* # x**

+1

such that uPi- x*, wPitt x**, and g(x*) = g(x**). The

strict pseudo-convexity of g then implies that

A . AR A aD an U G an B W A W o 4y T

/BR)




47
g' (x*) (x*-x**) > 0. But g' (uF) (P-uP™h) = g' (uP) P||uP-uP™*|

+ .
P_ P 1H is bounded while g' (u)eP tends to zero:;

and Hu

this and the continuity of g' imply that g' (x*) (x¥-x**)= 0
. . . . nop p+1

which is a contradiction. Therefore |ju'- u* || must tend to

Zero.

2.5 Free-steering Methods. The classical Gauss-Seidel

method uses the n orthonormal coordinate vectors cyclical-
ly. The so-called free-steering methods of Ostrowski [31],
and Schechter [37], [38], allow the coordinate vectors to
appear in any order, requiring only that each appear infinite-
ly often. We abstract the essential elements of this approach
in the following definition.

Definition 2.5.1. A sequence of vectors {eF}, with

|lePll = 1, is free-steering if the sequence contains only a
finite number of distinct elements and, for any N, the set
{ep:p z N} spans E°.

The assumption that a sequence of directions is free-
steering is relatively weak, and must be balanced in our

next theorem by the strongest assumption yet--uniform pseudo-

convexity--about the functional. The theorem is a general-

ization of a result of Schechter [38], who required a uni-

|

~

formly positive definite second derivative, the coordinate

-

directions for P and a particular choice of step-size.
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Theorem 2.5.1. Let g:D & E™ R De uniformly pseudo-~

convex and have a continuous derivative on an open convex
set D. Suppose that the sequence {ep} is free-steering,
the sequence up+1= WP~ t &P remains in a compact subset
Do € D, g(up+l) = g(up), p=20,1, ... and g'(up)ep~ 0. Then
g‘(up)~ 0 and the sequence {up} converges to the unigque min-
imum of g in D.

Proof: Let x Dbe a limit point of the sequence {u’}
and suppose that g'(x) # 0. We will show that this leads
to the contradictory statement g'(x) = 0.

Let a Dbe the least positivé element of

{lg* ®)ePl:p = 0,1, ... ,1.

Since by the definition of a free-steering sequence, there
are only finitely many distinct ePrs  and they span En, a

is well-defined. Let &(t) be defined by (1.1.7), i.e.,

lg* (W) -g' (V) ]| = t}

§(t) = inf{l|u-v|l:u,v € D;
and set r = 6(%); the uniform continuity of g' ensures
that r > 0. Let S Dbe an open sphere of radius r about
x and K = {u:g'(x) (x-u) > %rd(r)} where d is the non—.
decreasing function in the definition of uniform pseudo-
convexity:

g(u) = g(v) implies g'(v)(v-u) z d(|[u-v])|u-v].

By the definition of a forcing function, d{(r) > 0 and hence

-_-3-:-’---5---\-
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K 1is an open half plane such that x & K.

Now suppose u € L = {v:ig(v)=g(x)} and u & S. Then
lu-x|l =z r and since g(u) = g(x), the uniform pseudo-
convexity of g shows that

g' (x) (x-u) =z d(||x=ul]) |[|x-u|| =2 rd(r) > %rd(r)
and thus u Dbelongs to K. Therefore L c S U K. It is
easy to see, since g(up+1) = g(up), that the value of g
is the same for all limit points of {up} and thus every limit
point of {up} lies in L. But S U K 1is an open neighbor-
hood of L and, since {up} is bounded, we can choose an N
so large that p & N implies W& € s UK. As g'(up)ep* o,
we may also require that
(2.5.1) : lg'(up)epl < %a, p £ N.

Now let C Dbe the set of points in S that are not in
K. We will show next that if W € ¢ for p £ N, then
g' (x)ef = 0 and F* ¢ c. For if P - x|l < 8(%a) then the
definition of & implies that Hg'(up)—g'(x)n = La which

with (2.5.1) gives Ig'(x)ep] < a. But a is the least pos-

itive element of {lg'(x)ep|:p = 0,1, ...} and thus g'(x)ep= 0.

+ +1 i
Moreover, since WP = uP - tep, g'(x)(up— up }) = 0 which

1
implies g'(x)(up— X) = g‘(x)(up+ - X). Thus, since oF Z K,

p+i

it follows that Wt £ K. Since u € S UK, ' must

belong to C.
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Because X 1s a limit point of {up} and x £ K the se-

quence {«P} is in C infinitely often. However, once uP

belongs to C for some p' Z N, we have just shown that all

p

subsequent u“ also belong to C. But then g'(x)ep= 0,

v

p 2 p' and the assumption that {eP:p = p'} spans ED implies
that g'(x) = 0.

Thus, any limit point x of {uP} must satisfy g'(x)= 0
and since, for a uniformly pseudo-convex functional, by
Theorem 1.3.1, the unique minimum of g is the only solution

of g'(x)= 0, the sequence {up} converges. This completes

the proof.
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CHAPTER III

STEP-SIZE ALGORITHM

3.1 Basic Lemmas. In the last chapter we examined the

choice of "directions" e for a seguence {up} satisfying

+
(3.1.1) WP F-t P
p
and obtained convergence results under the crucial assump-

tion that
(3.1.2) lim  g' (WP)eP= 0.
. pe

In this chapter we examine a variety of methods for choosing
the step-size tp and concentrate on proving that g'(up)epﬂo.
For given step-size algorithms, we also conclude that the
sequence {up} is well defined. The only assumptions now
about the directions will be the normalization conditions
(3.1.3) 1eP = 1, g' (WP)eP = o.
The second condition is merely a convenience which enables us
to take tp as non-negative. We stress that because our anal-
ysis 1is concerned solely with step-size the results will ap-
ply to both gradient-related and Gauss-Seidel methods.

Among the step-size algorithms we investigate are ones
discussed by Altman [ 2 ], Armijo [ 3 ], Goldstein [14], [15],
[17], Ostrowski [32], and Schechter [38]. 1In these papers

analysis of step-size is interwoven with the discussion of

the questions we studied in Chapter 2, and therefore results

51
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we attribute to these authors may only be implicitly con-
tained in more complete theorems.

As well as (3.1.3) it will be assumed throughout this
chapter, without further explicit mention, that D is an
open subset of E" and the function g:D C E%- R has a uni-
formly continuous Frechet derivative in D. We also assume
that on the component L, of the level set {u:g(u)=g(u°)} to
which the initial point u°® belongs, g is bounded below and
that Ly itself is closed. If the functional is defined in
the entire space then L, is necessarily closed by the con-
tinuity of g. But because g 1is not assumed to be defined
everywhere this explicit assumption is needed.

We also note that all results of this chapter extend
trivially to an arbitrary Banach space since once the direc-
tion ef has been selected the task of choosing step-size
becomes a one dimensional problem, involving only points on
the half-line {uP- teP:t = 0}.

At first glance, one might consider using any step-size

algorithm which decreases the value of g. As simple exam-

ples even in one dimension show, however, the condition

+1
g(up ) < g(up), p=20,1, ...

does not imply that g'(up)ep~ 0. On the other hand, we have

the following result.

- S N m
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Lemma 3.1.1l. Suppose {up} c L, and

(3.1.4) () - g™y z a(g (P eP), p =o0,1, ...

for some forcing function d. Then g'(up)ep~ 0.

Proof: Recall (Definition 1.1.1) that d:[0,«) - [0,=)
and d(tp)~ 0 only if tp* 0; hence the sequence {g(u)} is
non-increasing. But (0P} < L, implies that {g(up)} is
bounded below and therefore converges. It follows that
g(up)- g(up+1)~ 0 and d(g'(up)ep)ﬂ 0, which, since d is
a forcing function, shows that g'(up)ep* 0.

Showing that (3.1.4) holds, which might be termed the
principle of sufficient decrease, is the underlying theme of
this chapter. For every step-size algorithm we study we will
obtain a relation of the form of (3.1.4) with an appropriate
forcing function d.

One method of obtaining estimates like (3.1.4) is what

we have called the comparison principle. Suppose, for exam-

ple, we have already analysed some algorithm and shown it
produces a sequence of iterates satisfying (3.1.4). Denote
by TP  the iterate produced by the algorithm at up. To
prove that a second algorithm produces iterates satisfying
(3.1.4) it is sufficient to show that g(up+1) = g(ﬁ?),

p =20,1, ... ; for then we have

g(P) - gy z g(®) - g(@) =z a(g' (PP,
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and the second iteration satisfies (3.1.4).

The sequences {up} will be defined inductively and it is
always necessary to prove that the uP belong to the domain
of definition of g. The following will be our main tool to
ensure that all iterates do, in fact, remain in L,.

Lemma 3.1.2. Suppose o € Ly, g'(up)eP > 0, and, for

0 <¢C o, I = {up— tep:0§téc}. Then I N Ly, contains an

1A

open interval {uP- tep:0<t<to}. Moreover, if for every posi-
tive t such that [dF,uf- tef]l c 1 n Lo we have
P)

< g(up),

(3.1.5) g(up- te
then I C L,.

Proof: Since D is open, the continuity of g' and the
fact that g'(up)ep > 0 ensure the existence of an interval
[0,tg), to > 0, such that g'(up— tep)ep >0 for t€[0,ty).
Hence, by the mean value theorem, (3.1.5) holds for t €
[0,ty) and therefore I N L, contains the open interval
(up,up— toeP). Now I N L, is closed, since Ly 1is closed,
and if I N L, were a proper subset of I we could write
the component of I N Ls containing o as [up,z]. Since
z # up, then by (3.1.5) g(z) < g(up). But 2z 1is a boundary

P).

point of L, and therefore g(z) = g(u’) Z gl(u This is

a contradiction and we have I C L,.
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3.2 Minimization, Curry, and Altman Step-size Algorithms.

he two classical step-size algorithms

’

(3.2.1) tp = the smallest non-negative solution of
g'mem%e&=m

due to Curry [ 7 ], and minimization on L,, where F-t &P

is a point of L, such that

(3.2.2) g(up— tp ) = min{g(up— teP):t = 0; uP- tef ¢ Lo},

are in general different for non-quadratic functionals.

(They will coincide if g is strictly convex or even strict-

ly pseudo-convex.) Each has been investigated by various

authors for particular choices of direction. We will obtain

results for these and other step-size algorithms as corollar-

ies of an analysis of the following general algorithm. For

A

fixed 0 = g < 1, define ap =0 1if g'(up)ep= 0 and other-

wise

(3.2.3) ap= sup{t:0sr<t implies g'(up— reP) ef > qg'(up)ep}.
Then set -

(3.2.4) 7 Y» %

where 1 = wp z dl(g'(up)ep) for a fixed function d; which

forces its argument to zero. (In particular, d, (t) may be

]

constant.) When ¢ 0 and wp = 1 this is the Curry

algorithm; for g > O, uP - ap e is the first point along

the line {uF- teP:t = 0} at which the slope is the fraction
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q of the value at t = 0. This algorithm is a variation of
the following algorithm proposed by Altman [ 2 ] for gradient
directions. We choose a fixed C€C >0 and 0 =2 g< 1 and

set

(3.2.5) ap = sup{t:0 = r < t= Cg'(up)ep implies

b

%

g' (uF- reP)e ag' (u®) eP}.

Then we may (although Altman didn't) use a relaxation factor
wp and define tp by (3.2.4) It is possible to define a ver-
sion of (3.2.3) with a bound ¢t = Cg'(up)ep or a version of
(3.2.5) without the bound and to analyse these modifications
in a way analogous to the following results for (3.2.3) and

(3.2.5).

Theorem 3.2.1. Assume that L, is bounded and for fixed

0= g<1 let {tp} be defined by (3.2.4) and (3.2.3). Then

. + . . .
the iterates up to up- t ep are well-defined, remain in

Lo, and g'(up)ep~ 0.

Proof: Suppose that o € Lo. If g'(up)ep= 0, then

up+1= up. If g'(up)ep > 0 then ap is positive (and possi-

Pos=t=al. Let u # o

p
be any point in I N L, such that [up,u] c IN Ly,. By Lem-

bly = ») and we set I = {up— te

ma 3.1.2 such points u exist. From the mean value theorem
and (3.2.3) we have

(3.2.6) g(F)- gw= g' (v) (dP- w)> qg' (WF)eP|uP-ull = 0
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for some v € (up,u) C IN L, =and thus g(u) < g(up). By
Lemma 3.1.2 we then have I < Lo and since Ly is bounded,

. . . p+i ~ .
ap is finite. Hence, since wp =1, u € Lo, and it fol-
lows by induction that {up} C Lg.
To establish (3.1.4) we initially assume g > 0. Let-
ting u = oP- wpap &P in (3.2.6) and using (3.2.4) we have
+1
g(up) - g(up y > qg'(up)epw a
. PP
z gg' (uP)eP dl(g'(up)ep)ap .
Setting T = uP- ap ep, it follows from (3.2.3) that
g'(ﬁp)ep = qg'(up)ep, and then for the function & defined

by (1.1.7), i.e., 8(t) = sup{|u-v

l:llg* (W)= g' (V)| = t;u,veD],

we have
a, = [v®- 3 = s (llg' (PP)- ' @)
since |leP]| = 1, and & is monotonic
s (lg' Py - g @)D =z s (|lg' () - g* (T 1P])
= 6 ((1-q) g' (uP)eP).
and thus
(3.2.8) a, z 8((1-q g'(WD)eP).

As usual, the uniform continuity of g' implies that § is
a forcing function. For g > 0 we have therefore established
(3.1.4) with

(3.2.9) a(t) = qtd; (£)8((1-q)t),
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and d, as the product of forcing functions gt, 4, (t), and
6 ({(1l-g)t), is again a forcing function.

If g = O we use the comparison principle to establish
(3.1.4). Let a, be defined by (3.2.3) with q =

0
with q = %. Set e WP w ap e ana T = uP- wpaﬁep.

and a'
b

Using the mean value theorem we have
G(@) - g®) = gt @- T = gt (wef [IFF- T

for some u € (ﬁp,up+1) which therefore satisfies g'(u)ep> 0.
Thus g(up+l) < g(ﬁp). This and (3.2.9) with g =% give

g () - gy > xg' (WP) ePs (g (WP) D) q; (g¢ (uP) P)
which is of the form of (3.1.4). Applying Lemﬁa 3.1.1 we may
conclude for 0 2= g < 1 that g'(up)ep - 0. This completes
the proof..

We note that we may remove the assumption that L, 1is
bounded if g > O since then our standard assumption that
g is bounded below on L, suffices to guarantee that ap
is well-defined. For the algorithm (3.2.5), no assumption
of boundedness of Ly is needed even if g = 0 as we next show.

Theorem 3.2.2. Let fixed constants 0 = g < 1 and

0 < C Dbe given, and assume {tp} is defined by (3.2.5) and

p+i

(3.2.4). Then the iterates u = up-tpep

are well-defined
+
and remain in Lo, g'(u)ef - 0, p » =, and WP- P - o,

p-;oo.
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Proof: The proof is similar to that of Theorem 3.2.1
and we only point out the differences. Firstly, it is the
bound t = Cg'(up)ep rather than the boundedness of L,
that guarantees the existence of the supremum in (3.2.5).
Therefore up+l is well~-defined although we do not yet know
it is in Ly. However, assume for t, > 0 that the interval
[up,up~toep] is a subset of I,. Then for any 0 < t < tg

there is by Lemma 3.1.2 a 0 < t' < t such that g(up-t'ep)<

g(up). By the mean value theorem and (3.2.5)
g(up—t'ep) - g(up-tep) = g'(up—t"ep)ep(t-t')
(3.2.10) z g g* (dF)eP (t-t)

v

0.
Thus g(up) > g(up-tep), and we can apply Lemma 3.1l.2 to
conclude uP+? € Lp. .

To derive an inequality of the form of (3.1.4) we again
assume initially that g > 0. As in the proof of Theorem
3.2.1 we have (3.2.7). Only the lower bound on the norm of
W- @ differs. For the iteration given by (3.2.5) either
Y

[P~ @) = cg' (WP)ef or g (@)e® = qg' () ana (3.2.8)

~holds. Thus

(3.2.11) Hup— EPH z min{Cg'(up)ep, 6((l—q)g'(up)ep)},
and for g > 0 we have established (3.1.4) with

(3.2.12) d(t) = gtd, (t) 'min{Ct,8 ((1-g)t)}.
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d forces its argument to zero and enables us to conclude
that g'(up)ep* 0. The case where g = 0 is handled by the
comparison principle just as it was in the proof of Theorem
3.2.1. This concludes the proof.

Recall that in Theorems 2.3.1 and 2.4.1, a key assump-

p+1H - 0. Thus the combination of Theo-

tion was that Hup— u
rems 2.4.1 and 3.3;2 allows us, for this algorithm, to con-
clude that- g'(up)~ 0 for the Gauss-Seidel directions with-
out any convexity assumption. On the other hand, the combin-
ation of 3.3.2 with 2.3.1 shows that g'(up)~ 0 4if only the
solutions of g'(u) = 0 are isolated.

If ap is defined using the following variation of (3.2.3)

(3.2.13) ap = sup{t:0=r<t implies g'(u - re p}

qg' (u¥) e
for fixed 0 =2 g < 1 then the resulting iteration is well-
defined and g‘(up)epﬂ 0. We state this as a corollary and

omit the proof.

Corollary 1. Assume Ly is bounded, and for fixed

02 g<1 let tp be given by (3.2.4) and (3.2.13). Then

. +1 . . .
the iterates up = up— t ep are well-defined, remain in

P
Lo, and g'(up)epﬂ 0.
With the aid of the comparison principle we obtain a

theorem on the minimization algorithm (3.2.2) essentially as

a corollary of Theorem 3.2.1.

|
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Theorem 3.2.3. Assume Ly is bounded and let tp be de~
fined by (3.2.2). Then the iterates FH o GPe tp e are de-
fined, remain in I, and satisfy g'(up)ep~ 0.

Proof: Assume WP e Lo. Since Ly is closed and bounded
the set {uP- teP:t = 0} n L, is compact, and tp is well=-
defined. Clearly, up+l € Lo. Now let a_ Dbe defined by

P
(3.2.3) with 0 < g < 1 and set @ = oP- ap eP. Then by de-
finition g(uf™) = g(&). With (3.2.7) and (3.2.8) this im-
plies
g(WP) - g(P*) 2 g(P) - g(@) 2 qg' (P) P8 ((1-q) g* (P) D)
so that by Lemma 3.1.1 we have g'(up)epﬂ 0.

We need not restrict ourselves to minimization on a com-
ponent of the level set, Lo. If we assume the entire level
set is closed and bounded, then by continuity g is bounded
below on the entire set and we obtain the same result for a

step-size algorithm which chooses the minimum from the entire

half-line {uF- tef:t = 0].

Another minimization algorithm is to choose some fixed

+1
p+i_ P P ¢

C >0 and let u u - tp e Lo satisfy

A

g(@P™) = min{g(uP-tef):0 = t = cg' (uP)eP;uP-teP € 1,}.
An argument that the iterates are well-defined and satisfy

g'(up)ep~ 0 would parallel the proof of Theorem 3.2.3 but

use the comparison principle with (3.2.12) instead of (3.2.9).
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Moreover the result would follow without the assumption that
. +

L, is bounded, and we have in addition that |juP- wP"*| -~ 0.

3.3 Using One Newton Step. To carry out the Curry al-

gorithm (3.2.1) it is necessary to solve the one dimensional

non~linear equation

(3.3.1) hit) = g' (WP+ teP)eP = 0.

A standard one dimensional method for solving (3.3.1) would

be the Newton algorithm. We now analyse the tactic of taking

only one Newton step from P towards solving (3.3.1). Since
h' (t) = g"(up+ tep)epep

this yields the iteration

. (.P\ D
(3.3.2) P o P gw)e  p

gn (up) epep

which was first suggested by Cauchy [ 5 ] for gradient direc-
tions if u® is sufficiently close to a minimum. More recent-
ly, a local convergence theorem for the more general algorithm

(3.3.3) p+1 p g' (u") e

u = u - w e
P gu (up) epep

using Gauss-Seidel directions and 0 < wb < 2 was given by
Ortega and Rockoff [30]. For the same directions Schechter
[33] gives a global convergence theorem for 0 < wp < 2v,
where vy may be small if u® is far from a minimum. We will
now prove a theorem which contains a local convergence result
for the full range of wp(O < wp < 2), a global convergence re-

sult for a suitably small range of wp, and for the guadratic
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minimization problems yields global convergence for the en-

tire interval 0 < wp < 2,

For a given set of directions {ep} and a given initial

o]

vector u , let
" p_pP
(_g'(ue’e p
(3.3.4) ap = 1g"(u—tep)epep : [u,u-te’] Lo}
and set
(3.3.5) v = 1Bf{%?g ap}.

Theorem 3.3.1. Suppose that in L, g" exists and satis-

fies for u € L,
(3.3.6) cllhfi® = ¢"(uwh,nh = c|n|?, 0 <cs=C.
Let vy Dbe defined by (3.3.5). Then Yy 1is positive and if

w satisfies
P

A

(3.3.7) ' dl(g'(up)ep) wp = 2y —dl(g'(up)ep)

for a forcing function dt) = v, (in particular d; may be

a positive constant) then the iteration (3.3.3) is well-defined,

the sequence {up} remains in Lo, g'(up)eP tends to zero, and
WP~ o™ - o.

+1
Proof: Suppose uP ¢ Ip,. If g'(up)ep =0 then u =

+
uwP. oOtherwise uf # WP and to show [P, uP™] Lo we must

establish (3.1.5). Let 0 < w < 2y Dbe any number for which

[up,uw] c L, where

o) ) q'(up)ep P

uw =u = g.ll (upi) epep

(The existence of such w 1is guaranteed by Lemma 3.1.1.)
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We have, by the mean value theorem

_ Py _ v (WP P 1t P _..p
(3.3.8) g(uw) g(u™) g' (u )(uw u ) + kg (V)(uw u’,u -ut)

for some v in the interval (up,uw) C Lo. Substituting the

definition of U, into (3.3.8), we obtain

eidy = e ety WP () ePeP g (P P2
g(uw) glu’) = g" (uP) ePeP * 2 (g" (uP) ePeP) ?
ig_liup) ep) 2w L g|| (l) epep _
gu (up) epep <2W g.u (up) epep l>.
But
q”(u{)epep .
g"(v)epep N Y
and thus
p . (g (P eP) 2w
gla) ~glu) === 5 FF (-

Therefore, for any 0 < w < 2y for which [up,uw] C Ly we
have g(uw) < g(up) and Lemma 3.1.2 impliés that the entire
. P P+ .

interval [u",u ] belongs to ILo. Setting w = wp for WP

satisfying (3.3.7) we have
(g* (WD) eP)? g, (g (uF) )2
2y g" (uP)ePeP

iv

(3.3.9) guP) - g

(g' () eP)2a, (g' (&) eP)?
2Cy

1}

which establishes (3.1.4) for d(t) = t°d$(t)/2Cy, and by

Lemma 3.1.1, g'(up)ep~ 0. Moreover, (3.3.6) and (3.3.3) im-
1 2

ply that Hup—up+ | = ?¥ g' ({®)eP so that “up_up+1“ -0

whenever g'(up)ep~ 0. This completes the proof.
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Corollary 1. Let g satisfy the conditions of Theorem

3.3.1 and for 0 < ¢ = £ let ¢ = w 2c
C P C

1A

- ¢. Then the
conclusions of the theorem hold.
Proof: For g" satisfying (3.3.6) it is immediate that

Y =

Qo

Corollary 2. Suppose x* is an interior local minimum of

g in D and, in a neighborhood N of x¥*, g" exists, is con-
tinuous and satisfies (3.3.6). Then for any 0 < e = 1, if u°
is sufficiently close to x¥*, wb may be taken to satisfy
€ Ew = 2-¢

and the conclusions of the theorem follow.

Proof: It suffices to show that if u° is sufficiently
close to x* then vy Z l-%¢. From the mean value theorem
and (3.3.6) we have

Lellu-x*{|® = g(u) - g(x*) = LC|u-x*||?

and therefore for any u € L,

Lellu®-x*||12 2 g(u®) -g(x*) = g(u) -g(x*) = Lel|lu-x*||2.
Hence L, 1lies in a sphere about x* of radius (%)%Huo—x*ﬂ.
Since g" is uniformly continuous in a neighborhood N of
x* there is an r > 0 such that the sphere S(x*,r) of
radius r about x* 1lies in N and u,v € S(x*,r) implies
that Ilg*(u)-g" (v)] & %ec. If [[u®-x*| = (gﬁ%r then L,

lies in the S(x*,r). Moreover, if u,v € S(x*,r) we have
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lg" (v)e"e® = g (wePeP| = [lg"(v- g = 4ec

and since c¢ = g“(u)epep we have that

E[u (u) epep - gu (u) epep
g"(v)epep g"(u)epep + X%ec
z 1 - €C
2g"(u);pep
= 1 - %e

Therefore,.if w’ is sufficiently close to x*, Y & 1-%e.
Theorem 3.3.1 is optimum in the sense that it contains
the best known result for the quadratic minimization problem.
In fact we have a generalization to arbitrary directions of
the relaxation results for free-steering methods discussed by

Schechter [37].

Corollary 3. If g" is constant and strictly positive

definite and wp satisfies
8, (g (W) ef) = w2 24, (g" (@) &)
for some forcing function dl(t) = 1 then the iteration
(3.3.3) is well-defined, remains in Lg, g'(up)ep - 0, and
PP = 0.
Proof: The proof follows from Theorem 3.3.1 and the ob-

servation that v is unity for g" constant and strictly

positive definite.
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Corollary 4. (Schechter [38]): Suppose that {ep} con-

sists only of coordinate directions and the definition (3.3.4),
(3.3.5) of vy 1is replaced by

(3.3.10)

y = min {inf a,,(u) / sup aii(u)}’

1sisn luen, ** u€L,
where (aij(u)) is the matrix representation of g" (u). Then
the statement of Theorem 3.3.1 remains valid.

‘The proof is immediate from the observation that, when
{eP} consists of coordinate directions, the v defined by
(3.3.4),(3.3.5) is at least as great as that defined by
(3.3.10) Note that the obvious extension of (3.3.10) to ar-

e Ay

bitrary directions,

_ inf {inf g"(u)epep / sup g"(u)epepﬁ
Y= p lueL u€lL, ‘

(3.3.11)
is, in general, smaller and hence less satisfactory than the
vy of (3.3.5)

To conclude this section we consider a variation of

Py P
_ .P _ g'(u)e P
(3.3.3) u = u wp g" (up) epep e

in which g"(up)epep is replaced by a constant C, thus
giving
+1 Yp p P
(3.3.12) BT o= WP - (?;)(g'(u )Py &P,
To carry out this iteration it is necessary to know a Lip-

schitz constant or a bound on the second derivative, but it

does not require knowing the functional g, or solving a
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one-dimensional nonlinear equation.

This iteration was first proposed by Goldstein [ 14]
with C as an upper bound on the norms of g”(up) and is al-
so discussed by Ostrowski [32]. Altman [ 2] and Armijo [ 3 ]
consider this iteration when C is a Lipschitz constant for
g' and g need only have one derivative. The following is
a minor extension of their results.

Theorem 3.3.2. Suppose that

lg* () ~g* (v) ]| = c|lu-v|, u,v € Lg
and that for some forcing function d;(t) = 1,
(3.3.13) dl(g'(up)ep) = W s 2—d1(g'(up)ep)
(in particular d; may be a positive constant). Then the
iteration given by (3.3.12) is well-defined, the iterates
(W} remain in Lo, g' (WF)eP- 0, ana Hup— up+ln - 0.

Proof: The proof parallels that of Theorem 3.3.1l. Sup-
pose o € Ly. If g'(up)ep = 0, then P WP 1s
g'(up)ep > 0 then o # up+l and we show first that (3.1.5)
holds. Let u, = ub - (wg'(up)ep/ C)ep for any wP >w >0

such that [up,uw] c L,. By the mean value theorem we obtain

(3.3.14) g(up)— g(up— teP)

1l

1
tg'(up)ep - j [g'(up)— g'(up—step)]epds
o

v

tg‘(up)ep - Lct®

which is positive provided t < 2g'(up)ep/ C. Thus
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+
(WP, o] < Lo. Setting

glu) < g(u®) and by Lemma 3.1.2,
t = wpg'(up)ep/ C in (3.3.14) and combining terms we havev
g(e®) - g(7) = w (2-w) (g" (&) eP)2/2c
which with (3.3.13) yields (3.1.4) with
a(t) = %t24, (¢)?/ c.
Thus Lemma 3.1.1 implies g'(uY)eP~ 0 and it follows direct-

ly from the definition of uf that [uf- «®"*| - o.

3.4 Over-relaxed Curry Iteration. We have seen, in

section 3.2, that the Curry iteration,
(3.4.1) up+l =uf - wa ep,

PP
for ap equal to the smallest non-negative solution of
(3.4.2) g' (WP~ teP)eP = 0
may be under-relaxed, i.e., Wé < 1, with no difficulty. For
quadratic g, the Curry iteration coincides with taking one
Newton step towards solving (3.4.2) and our result in section
3.3 indicates that in this case 0 < wp < 2 may be used. We
will now consider when, for non-quadratic g, we may take
w§ > 1 in (3.4.1). The result for quadratic g is a conse-
quence of the symmetry of the one-dimensional functional
h(t) = g(up— tep) about its minimum and to extend it to non-
quadratic g we must measure the deviation from this sym-
metry. Therefore, suppose P € Lo, aP given by (3.4.2) is

well-defined and set ﬁp = up— a ep. Define

b
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P b b
(3.4.3) 0 = {|L -t ¢ 40 and
b t
g(@P- tef) = g(uP)},
and set
(3.4.4) Yy = inf ap / sup Op.

Note that if g 1is twice continuously differentiable and
t # 0, then

(3.4.5)

=P Py P
! -t —
Ig E T e)e | Ig"(up— sep)epepl
for some 0 < s < t; if g 1is quadratic, Yp must therefore
be unity. We shall now give the following general result

and then consider various corollaries.

Theorem 3.4.1. Suppose that Ly is bounded, Yp is

defined by (3.4.4) and

3.4.06 l1=s=w =1 + 1l-¢
( ) 5 J?é( o)

where for some forcing function d,,
126 2 q (g (W)ed).
p
Then the iterates (3.4.1) are well-defined, lie in L, and
g'(up)ep~ 0.
Proof: Assume uP ¢ Lo, and consider the case when

g'(up)ep > 0. Let o = uP- epapep. To apply Lemmas 3.1.1
and 3.1.2 we must verify (3.1.5) and then (3.1.4). There-

P P

fore set u, = u - wape for any 0 < w = wp such that

[W,u] c L,. By the argument of Theorem 3.2.1 T € Lo,
W g
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and

(304.7) g(d®) - g(&®)

v

dlg' () eP)
for some forcing function d. But
(3.4.8)  g(u®) - g(u)
= (g() - g@®@)) + (&) - g@)) + (g@)- glu)),
and by the mean value theorem,
g(tP)- g@) = [ g @+ e(@P- P)) (@~ &P)at
o

(3.4.9)
I g' (T+ t(l-s )apep)((l € )a ) 2tePat

t(l-¢ )a

o)
z inf a %(l-¢ )%a .
o) PP

The mean value theorem also gives

1
gla)- g@) = [ g' @+ tlu,- Phu,- Pac
0

(3.4.10)
I g' (T+ t(w- l)apep)((w l)a y2tePat

t(w—l)ap

A

sup a.p%(w—l)2 apa.

Combining (3.4.8) and (3.4.9) we have
&Py - z inf @ %(l-¢ )®a - sup @ %(w-1)3a
g(u’) - glu )= in pz( p) o P p% ) o
which will be non-negative if

(inf ap / sup a:p)(l—ep)2 z (1-w)®.
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Since 1sw =1 - ﬁ(l-ep) we have from (3.4.7) ancd (3.4.8)
(3.4.11) g () - glu) = alg' )Py > o.

Thus Lemma 3.1.2 shows WP e L,, and by Lemma 3.1l.1 and
(3.4.11) with w = wp we have g'(up)ep~ 0.

Without further assumptions on g it is possible that
Yp may be zero; perhaps because g'(up— tep)ep = 0 has solu-
tions other than ap, perhaps because g"(ﬁ'p)epep = 0. If
Yy = 0 then pr= 1l and we have not extended Theorem 3.2.2.
However, there are important cases when relaxation factors
greater than unity may be used.

The simplest case is when g" is a constant, strictly
positive definite matrix. Then yp 1, 0< wp < 2 nmay be
used, and we have reproved Corollary 3 of Theorem 3.3.1. We
next consider the case when g¢g' is Lipschitz continuous, i.e.,
(3.4.12) lg* (W)= g* (V)| = cflu-v]
and uniformly pseudo-convex with a linear forcing function
d, i.e.,

(3.4.13) g(u) = g(v) implies g'(v) (v-u) = c|u-v||®, ¢ > 0.

Corollary 1. Assume that the conditions of Theorem

3.4.1 as well as (3.4.12) and (3.4.13) hold. Then the con-
clusions of the theorem are valid for w? satisfying
ls=w =1+ (c/C)%(l—e )
p P

Proof: For db given by (3.4.3) an easy calculation
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gives ¢ = inf d% and C z sup ap and thus Yo z ¢/C for all

If g" exists and satisfies
(3.4.14) cllnl|® = g" (whh = c|n||®, u € D
then (3.4.12) and (3.4.13) follow. With (3.4.14) and the as-
sumption that g" is uniformly continuous we can get a much
better result locally, just as we did with Theorem 3.3.1.

Corollary 2. Suppose x* is an interior local minimum

of g in D and, in a neighborhood N of x*, g" exists,
is continuous and satisfies (3.4.13), for u belonging to N.
Then for any 0 < ¢ & 1, if u’ is sufficiently close to x*,

wp may be taken to satisfy

A

e = w 2 - ¢

P
and the conclusions of the theorem hold.
Proof: From (3.4.5) it follows that
inf ab = inf{g"(u)epep: u € Lo}
= sup{g"(u)epep: u € Lol
= su a
P p

and thus

y_ = inf 4 / sup @ = inf{g“(u)epepzu € Lo}
P P p sup{g"(u)epep:u € Lo}

In the proof of corollary 2 of Theorem 3.3.1 we showed that
if uP was sufficiently close to x*, Lo lay within a sphere

S(x*,r) and that for any two points wu,v of S(x¥,x)
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| g (u) ePeP - g" (v) ePeP| = kec.
Hence, if L, € S(x*,r)

Iinf{g"(u)epep:u € Lo} - sup{g"(u)epep:u € Lo}| = kec
and we have inf Qp / sup A% = 1-%¢. For v = inf Yp we have
Y =z 1-%¢ and the result follows.

If g" exists and is continuou; then (3.4.5) implies
that for every p, Yp is greater than the vy defined by
(3.3;11). Moreover, if g" is expressed as a matrix (aij)
and the sequence {ep} consists only of the n distinct co-
ordinate vectors, then Yp is greater than vy defined by
(3.3.10), for all p.

3.5 Goldstein and Armijo Algorithms. Given up €D we

might consider choosing up+1 by verifying directly that
+1 +
(3.5.1) g(®) - g(P™) = a(g' (B)eM), WPt ¢ p,
for some simple forcing functions such as d(t) = gt or qgt=.

However, it is not possible to guarantee, in general, that

. . b . .
for any forcing function d there exists a up+ satisfying

(3.5.1). But a related approach does succeed.

Suppose up+1= «®  when g'(up)ep = 0. If g'(up)ep >0
we seek to verify instead
(3.5.2)  glP) - g™z q; (g (D)) P~ P, W €D

for a forcing function d,; satisfying dﬁtj/t = g = %. How-

ever, (3.5.2) will imply (3.5.1) only if we also know that
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(3.5.3) leP- WP 2 6, (gt (uP) &P
for a forcing function d;. 1In this section we consider al-
gorithms which verify (3.5.2) directly and show how they also
satisfy (3.5.3).

We consider first an algorithm proposed by Goldstein
(15], L16], [17], and also discussed by Altman [ 2]. The al-
gorithm is a procedure for taking another iterative method
and modifying it to obtain a decreasing seguence which satis-
fies g'(up)eP~ 0.

Assume that the original algorithm produces at o €D
an iterate W which equals o if g'(up)ep = 0 and other-
wise
(3.5.4) |WP- ) =z 4, (g' (u®) eP)

for a forcing function d; such that d; (0) = 0. If setting

NUARS & fails to satisfy
+1 P +1
(3.5.5) g(up)- g(up ) = q-g'(up)e -Hup- P I,
0 <qgq?&sl, up+1€D

then g'(up)ep > 0 and a number 0 < wb < 1 1is found such
that
(3.5.6) u = w@ + (L-w )uP

P P

satisfies both (3.5.5) and

(3.5.7) g(up)— g(up+l) = (l—q)g'(up)ep°nup— up+1

We now show that if g'(up)eP > 0 and (3.5.5) is false
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for up+1= W there is some wp € (0,1) such that up+1

given by (3.5.4) satisfies (3.5.5) and (3.5.7). Define
_ g - g(w
[uP-ullg* (uP) &P

h(u)

It follows from the differentiability of g that h is con-
tinuous for u € {up— e ¢ D: t= 0} and tends to unity as

t
u tends to uwP. 1f W £ D, then by Lemma 3.1.2 there is

interval [up,v] © D where v # o is a boundary point of

1A

Iy, and g(v) = g(u®) =z g(v®), thus h(v) 0. On the other

hand if W € D but g(uP)- g(@) < ag' (¢) PljuP- || then
h(ﬁpj < ¥. 1In either event h(u) must assume all values be-
tween % and 1 in the interval [up,ﬁp] and therefore for
wp sufficiently small, both (3.5.5) and (3.5.7) can be sat-
isfied, for some uPT € D.

This algorithm can be generalized by replacing (3.5.5)
with (3.5.2) and more significantly replacing (3.5.7) by the

weaker condition

p ptl
Ig(u ) - glu ) - g'(up)ep[ = dl(g'(up)ep)

(3.5.8)
P_ Py

[l u
for the d; of (3.5.2). Note that even if d; (t) is taken
as gt for g =%, (3.5.8) is weaker than (3.5.7). 1In the
following lemma we show that (3.5.8) implies (3.5.3).

+1
Lemma 3.5.1. Assume D is convex, up, up € D. If
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(3.5.8) holds with a forcing function d,; then (3.5.3) also

holds with d, (t)= 6(d, (t)), where 6 is defined by (1.1.7).
+ .
Proof: If up,up €D and (3.5.8) holds, then by the
) p P+l
convexity of D, (u‘,u ) € D and by the mean value theorem
p 1
there is some v € (u ,u ) such that

p+i

) =

g(up)‘ g(u = g'(v)ep.

P-

llu
(3.5.8) then implies
llo' - g @) 2 [l (= g (P 1P| 2 g, (g (D) D).
From (1.1.7) we have
lv=a®ll = s(lg' (v) - g* (P |) = 6(ay (g () eP))
and since v € (up,up+1), we may conclude
(3.5.3") "= P 2 6 (4 (g0 (1P)eD)).
Although there is a number wp which satisfies both
(3.5.2) and (3.5.8), in practice such a number may be ob-

tained only by trial and error. Presumably one would let wp

) -n .
be successively 1,%,%, ...2 7, ... until, for some value of

W WP+ satisfies (3.5.2). Then one would test if (3.5.8)
also held, and if not, increase wp until both (3.5.2) and
(3.5.8) hold.

We shall show in the next two lemmas that if wp is

chosen as the first value in the sequence 1,%,%, ... which

satisfies (3.5.2) then it is unnecessary to verify (3.5.8).
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We refer to this procedure as the Armijo algorithm because
it contains as a special case an algorithm of Armijo [ 3 ].
There are two ways in which the preceding trial value of

+ . . . . .
WP can have failed to satisfy (3.5.2) Either it did not

. p+1

belong to D or it belonged to D but g(u ) was too

large. Each of these cases is handled in a separate lemma.

Lemma 3.5.2. Let D De convex, 0< a < 1,

up,up— a_P(up— up+l) € D, and suppose

-1 +1 +1
(3.5.9) g(up)- g(uP- a™ (JP- WPy < adl(g‘(up)ep)ﬂup— u® I
where d;(t) £ qt, 0 < g = %. Then, for 6§ defined by

(L.1.7) we have

(3.5.3") || P - up+1H z ab ((1-q) g' (uF)eP)

Proof: By the convexity of D, the interval [up, ﬁp]
lies in D, where ﬁp = uP- a—l(up— up+1), and by the mean

value theorem and (3.5.9) we have

g'(v)ep = g(up)— g(ﬁp) < dl(g‘(up)ep)é qg'(up)ep
|uP~ &P

where v € (up,ﬁp) and P o= (up— up+l)/Hup- up+lH. Thus
Hg‘(up)-g'(ﬁp)H z [g' () -g' (0P) 1P = (l—q)g'(up)ep.
By the monotonicity of & we have

Pl

n

PP = alP- 0P 2 as (g (W) -g' (&) )

lla

ad((1-q) g' (d*) )

v

and (3.5.3") 1is therefore satisfied.
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Lemma 3.5.3. Let D Dbe convex, 0< a < 1, uP € D and

suppose

p+1

(3.5.10) & = P a™t (WP- P ¢ b,

Then +1
[WP=- P = as (g (uF)eP).

Proof: In the proof of Theorem 3.2.1 we showed ((3.2.8)

with g = 0) that the set {uP- P ¢ Lo : t Z 0} contains at

1A

least the interval {up— teP: 0=t 6(g'(up)ep)}, and there-

fore if ép Z Lo, |0P- oP|| 2 6(g' (\P)eP). Hence |P- up+l“
z ab(g' (uF)eP).

In the next theorem we show that the Goldstein and Armijo
aigorithms produce well-defined sequences for which g‘(up)ep~0
p »* ®. In general, wP and uPTt need not belong to the
same component of the level set L = {u € D : g(u) = g(u®)},
and therefore in the next theorem we strengthen the underly-
ing assumptions from conditions on Ly to assumptions about

L.

Theorem 3.5.1. Let D be convex, L closed, g bounded

below on L, 0 < a < 1 given and suppose for every o € D

we have a o satisfying

v

(3.5.4) |uP- &) 2 4, (g' (WD) eP)

where Ep = if g'(up)ep 0, and d;(0) = 0. Then ei-

i

ther the Goldstein or Armijo procedure may be used to obtain

a well-defined sequence of iterates such that g'(up)ep~ 0.
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Proof: Let d,(t) be a forcing function such that
- - . p+l_ _p . . .
4, (t)/t £ g=%. If, setting u =T, (3.5.2) is satisfied
then (3.5.4) implies (3.5.3). Otherwise d&; (0) = 0 implies
g'(up)ep must be positive and then we know that there is
p+1 .
some w? € (0,1) such that for u given by (3.5.6) both
(3.5.2) and (3.5.8) are satisfied, and by Lemma 3.5.1, (3.5.3)
holds. Alternately, letting wp ke the first value in the
sequence a°,a', ... , at, ... for which (3.5.2) holds (it
follows from g'(up)eP > 0 that (3.5.2) ultimately does hold)
we have either (3.5.9) or (3.5.10). Applying Lemma 3.5.2 or
3.5.3, respectively, we may conclude (3.5.3). But (3.5.2) im-
.  p+i P L
plies g(u ) 2 g(u”); thus the sequence remains in L and
by Lemma 3.1.1 and (3.5.3) g'(up)ep~ 0.
The following result, due to Armijo, is a corollary of
Theorem 3.5.1.

Corollary 1. Suppose g:Enﬂ R, and

+1 T
P o= WP- ap[g'(up)]

where a is the first number in the sequence 1,%,%, ... to

satisfy b o 7 D
g (WP - g(P- ap[g-<up)1 ) 2 kg (uWB) 2.

Then g'(up) - 0.
Proof: For this iteration (3.5.4) holds with d;(t)= t
and (3.5.2) with d;(t)= %t. Moreover g'(up)ep~ 0 is equi-

valent to g'(up)~ 0.

S &R a o o0 &0 A BN o8 v o W & o8 an a8 o om o (
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3.6. Searching for the Minimum of a Strictly Unimodal

Functional. 1In this section we consider algorithms which

evaluéte a strictly unimodal functional at a finite number
of points lying in the direction e® and bracket the min-
imum in that direction. We will show that these algorithms
produce step-sizes that are under-relaxed with respect to
one of the variations of Altman's algorithm and it will fol-
low from our results in Section 3.2 that they produce well-
defined iterates such that g'(up)ep - 0.

Before discussing direct search algorithms we first

give some results about a variation of the step-size algo-

P pe given,

rithm given by (3.2.5). Let the direction e
set ap = 0 if g'(up)ep = 0, and otherwise, let
(3.6.1) ap = sup{t:0sr<t implies g'(up--tep)ep z 0}.

Let wp satisfy

A
HA

w 1, 0 <cec=1,

P
and define up+l = up ~ wpa ep. It follows from Corollary 1

(3.6.2) c

of Theorem 3.2.1 that if L, is bounded then the iterates

are well-defined, remain in L, and g'(up)ep - 0.

Note that u® = u’° - apep is a local minimum of g on

P

I = {up-te € Lo:t = 0}, since h(t) = g(up-tep) is non-

P

increasing for 0 = t = ap and increasing at least for some

small interval beyond ap. If we assume that g is strictly
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quasi-convex then g has precisely one local minimum on a
bounded line segment and T must be a (global) minimum of
g on ip. Therefore, when g is strictly quasi-convex,
this algorithm coincides with the minimization algorithm,
but our result now permits the use of an under-relaxation
factor. (In general this is not permissible with the mini-
mization algorithm.) Under the assumption of strict guasi-
convekity we can also show that the minimization algorithm
produces iterates satisfying “up-up+1H -0 as p - =,

Theorem 3.6.1., If L, is bounded, g is strictly

guasi-convex, and t_ = for ap satisfying (3.6.1) and

w a
P PP
wp satisfying (3.6.2) then tp -0 as p - o.

a
b

JIA

Proof: Since g(up-tep) is non-increasing for t

it follows that
P

v

p+l) g(up+l)

(3.6.3) g(up) Z g(wu + (l1-w)u
for w € (0,1), By Theorem 1.4.1 strict quasi-convexity im-

plies property S and by Theorem 2.4.2, (3.6.3) then implies

t = 0.
P

We now consider direct search algorithms for strictly
unimodal functionals. Let I denote a bounded interval,
ordered in the usual fashion, and x* the minimim of g on
I. Recall, (section 1.3) that a functional g is strictly

unimodal if for any bounded interval I and points u,v,x*

R
MR S o G 0 ae o e o S G o0 an a8 em aE o [
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of I, 1if u<v<x* or if u > v > x* then g(u) > g(v)
> g(x*). Recall also that in Theorem 1.3.5 we showed that
strict unimodality was equivalent to strict quasi-convexity,
and we shéll therefore use the terms interchangeably.

The property of strictly unimodal functionals exploited
by direct search algorithms is this: if u < w < v are
three points of a bounded interval I, g(w) = g(u), and
g(w)lé g{v) then the minimum =x* of g on I is in the
segment [u,v]. For if x* is not in [u,v], say x* > v
then w < v < x* implies g(w) > g(v) > g(x*)' which contra-
dicts the assumption.

One very simple direct search technique for the minimum
of g in the interval Ip is to place m equally spaced
points W= u, <u < cee < in the interval. If

1 2

g'(up)ep >0 and m is sufficiently large then some %k > 2

will satisfy

g(uk) = mln{g(ui):l =1,...,m}

and x* will lie in the interval [uk-l’uk+l]' Setting
p+l . . P+l jo p %

= that = - £ i =
u W _q implies a u u wpape or % = wp
= 1.

Therefore, if
(3.6.4a) up+l = up when g’(up)ep = 0,
otherwise,
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(3.6.4Db) g(uk) = min{g(ui):i = 1,...,m}, k > 2,
and

3.6.4c¢) Pl _

(3.6.4c¢ u = uk-l'

then this direct search algorithm will, by Corollary 1 of
Theorem 3.2.1, produce well-defined iterates that remain in
L, and satisfy g'(uF)ef - 0, p - ». Moreover, Hup~up+lﬂ
- 0, as p = o,

.In practice, one would use a more sophisticated strategy
for placing the points L (see especially Wilde [44]), but
it is clear that our analysis extends to more complicated

direct search algorithms. The constant ¢ will differ from

method to method, but if (3.6.4) is satisfied then up+1

P

will equal wu —wbapep for socme 0 < c = wp = 1, and we will

again have well-defined iterates satisfying g'(up)ep - 0,

Py Lo,

and |[uP- as p - o,




CHAPTER IV

REPRESENTATIVE CONVERGENCE THEOREMS

The last chapter was devoted entirely to the analysis of
suitable choices of step-size for minimization algorithms and
the one preceding it to the discussion of the choice of direc-
tions and to questions of convergence. In this chapter we seek
to tie these results together by applying them to a series of
specific combinations of step-size and direction. There are
dozens of bossible combinations but many are uninteresting. We
are motivated in our selections by several factors. Well known
algorithms are discussed so that our results may be compared to
those in the literature. Some new combinations that are compu-
tationally more convenient or apply to a wider class of prob-
lems than the well known algorithms are also considered. Final-
ly we wish to illustfate as many methods as possible and some
selections are made simply for completeness.

Proofs in this chapter will be brief, restricted essen-
tially to quoting the relevant results in the previous chapters
and proving their hypotheses are satisfied. We assume in this
chapter that g:D C E'~ R has a continuous Frechet derivative
on an open set D, that Ly is a closed, bounded component of
the level set {u € D:g(u) = g(uo)} which contains the initial

iterate u®. Continuity of g and compactness of Ly then

85
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imply that g¢' is uniformly continuous on Lo and there ex-

ists at least one point x* € Ly such that g(u) z g(x*),

for all u € Lo and g'(x*) = 0.

4.1 _Gauss-Seidel Directions. We begin with the Gauss-

Seidel method, which has already been presented as an example

. L . . +
in Chapter 2, writing the iteration as WP yPe tp eP. as

P

directions e, we use the n orthonormal coordinate vectors

cyclically. Thus, if ep,e;, ... , e _, are the coordinate

vectors, ep is given by

(4.1.1) e = sgn(g'(up)ei)ei, i = p(mod n).

To define the step-size tp let ap be the smallest non-

negative solution of
(4.1.2) g'(up— tep)ep =0
and let w_ be a relaxation factor satisfying

(4.1.3) a, (g' (iP)eP) = wo E 1,

for a forcing function d; (Definition 1.1.1). In particular,

¢ for 0 < c=1 may be used. Setting t = w a
P PP

the Gauss-Seidel algorithm for minimizing a functional.

d; (t)

we have

The best previous result for this method is due to Schech-

ter [38] who used wp = 1 and required that g have a uni-

formly positive definite second derivative. We need only the

assumption that g has one uniformly continuous derivative

and property S (Definition 1.4.1). Recall that g has
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property S if whenever g(u) = g(v) for u # v there is
some W in the open interval (u,v) such that g(w) # g(v).
Strict convexity, strict quasi-convexity and strict pseudo-
convexity each imply property S, but are considerably
stronger.

Theorem 4.1.1. Suppose that g'(u) = 0 has only isola-

ted solutions in Ly, g has property S on Ly, the se-
quence {eP} is defined by (4.1.1), ap is given by (4.1.2)
and wp satisfies (4.1.3). Then with
(4.1.4) \ up+1 = - wa &f

PP
we may conclude that the iterates W®  are well-defined, re-
main in Ly, and converge to a solution of g'(u) = 0.

Proof: Clearly (4.1.1) implies that HepH = 1 and

g'(up)ep Z 0. By taking g = 0 in Theorem 3.2.1 we have
that all the iterates uf are well-defined, remain in L,
p)ep tends to zero. The mean value theorem implies

and g'(u

that for this choice of step-size

p+1 )

v

+
(4.1.5) g(uf) z g(tuP+(1-t)u g (WF™) £ € (0,1)
and then since L, 1is compact, and g has property S,
. P p+1 . .
Theorem 2.4.2 yields that [lu®- u® || = 0. With this, and the
uniform linear independence of the directions ep, Theorem

2.4.1 implies that g'(up) - 0. But g'(u) = 0 has only iso-

lated solutions and thus Theorem 2.2.1 yields the convergence
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of the iteration to’a solution. This completes the proof.
If g is strictly pseudo-convex then by Theorem 1l.3.1,

1.3.3; and 1.4.1, g has property S, and g'(u) = 0 has a

unique solution. Therefore a strictly pseudo-convex func-

tional satisfies the hypotheses of the theorem. We give,

however, another example which satisfies the hypotheses but

which is not even quasi-convex.

Let g:E°® - R Dbe the Rosenbrock [36] functional defined

by
(4.1.6) glxy,%) = 100 (x¥-x5)%+(1-x,)°,

whose level curves are shown in Figure 4.1.1.

A X

Figure 4.1.1 Level Curves of the Rosenbrock Functional
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We will verify that the conditions of Theorem 4.1.1 are sat-
isfied by this functional. It is easily seen that g has
boundéd level sets since g(x) - » as ||x|| ~ «. Further,
400%; (xF-%) - 2(1-x,)
g'(x) =
-200 (%3 -x;)
and the only solution of g'(x) = 0 1is (1,1). To prove g
has property S it is sufficient to show g is not constant
on any line segment. Suppose for some constant ¢,

h(t) = g(u+te) = c, 0< t=ty, |e] = 1.

Then all derivatives of h on [0,ty] must be zero but an
easy calculation shows that h*(t) = 2400ef. Hence e, = 0
and then h'(t) = 0 implies that u? = u,+te; for

t € [0,tg]. Therefore g is not constant on an interval,
has property S and thus satisfies the conditions of Theo-
rem 4.1.1. However, g 1is not convex or even guasi-convex so
that Schechter's result does not apply to it.

In the proof of Theorem 4.1l.1 property S was used only
to establish that Hup - up+1H tended to zero. We now sug-
gest a modification of the Gauss-Seidel algbrithm which elim-
inates the need to assume property S Dby implying directly
that ||u® - uP™'| tends to zero. Suppose for some fixed

C >0 we let tP be the minimum of wp ap and




90

Cg‘(up)ep. Then we would still know, using the arguments of
Theorem 3.2.2, that o is well-defined and all the up re-
main ih Lo. Moreover, g'(up)ep still tends to zero, but
now this implies directly that Hup- up+lH - 0. Thus a con-
vergence theorem for this modified Gauss-Seidel algorithm can
be given without assuming property S.

~ Let us digress for the moment from our examination of
algorithms and consider whether the other hypotheses of Theo-
rem 4.1.1 are essential. Elementary examples, even in one di=-
mension, show that neither the boundedness nor the closure of
L, may be dispensed with in general. If g is continuous
but not continuously differentiable everywhere, then (even if
it is uniformly convex) the Gauss-Seidel algorithm may not
converge to a minimum of g. For example, if g(x) =
x? + X2 + lxl—xg\ then g 1is bounded below on En, uniform-
ly convex, has closed bounded level sets, and a unique mini-
mum. Nonetheless, there are u° for which the sequence {up}
will not converge to the minimum of g.

The hypothesis that g' has isolated zeros is probably

unnecessary. Kahan [20] has shown that the Gauss-Seidel me-
thod will converge for quadratic functionals with a continuum

of minima. The extension of this result to non-quadratic

functionals is still an open guestion.
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A major objection to using the Curry algorithm, (4.1.2),
to determine the step-size is that at each iteration it re-~-
quireé the solution of a nonlinear equation. If a Lipschitz

constant C for g' is known, we may use the next iteration

which is simpler to apply.

It

(4.1.7) o uP - wp(g'(up)ep)/c &P

where wp satisfies

(4.1.8) . 4, (g' (PP eP) = Wy S 2 - d g (uP) &P)

for a forcing function d;, and C 1is a Lipschitz constant
for g', i.e.,

(4.1.9) lg* (w) = g* (v) || = cllu-v|| u,v € Lg.
It is clear that ||uP- up+1H -~ 0 whenever g'(u")eP ~ 0, and
therefore we need not assume property S to prove conver-
gence for this algorithm.

Theorem 4.1.2. If g'(u) = 0 has isolated solutions in

I, and (4.1.9) holds then the iterates {up} given by (4.1.1),
(4.1.7), (4.1.8) and (4.1.9) are well-defined, remain in L,
and converge to a solution of g'(u) = 0.

Proof: By Theorem 3.3.2 the iterates wP  are well-de-
fined, remain in Lo and g'(u)eP~ 0. Hence, [uP- up+1“ - 0
and Theorems 2.4.1 and 2.2.1 show that g'(up)4 0 and the se-
guence {up} converges to a solution of g'(u) = 0.

4.2 Rosenbrock Directions. Although the Gauss-Seidel
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iterates converge, the rate may be slow. This is particular-
ly true if the functional g has a long narrow valley which
is not parallel to any coordinate axis. The next direction
algorithm (based on a proposal by Rosenbrock [36]) attempts
to speed the convergence by using more information about the
past behavior of the iteration sequence.

For the Rosenbrock algorithm the directions are computed
in blocks of n, and depend on the results of the last n
iterations. The first n iterations of this algorithm are

precisely the same as for the Gauss-Seidel directions. Once

n . . .
u has been computed, the Gram-Schmidt orthonormalization

. . n n-1
process is applied to the sequence u - u’, u - u’, ...,

ut - u°, or if these are linearly dependent, to the set Bk =

k
(W=, ..., ut=u, &, e, ..., e} for the smallest

’

value of %k such that Bk spans En. This will produce n

n -
new mutually orthogonal vectors, e , ... , %7, of norm

. . . . n+i n+=2
unity, and when using these direction vectors, u , U ,

2n . .
eees , U have been computed, the Gram-Schmidt process is

. 2n- n n+1 n
then applied to the sequence u ‘ou r eee o U -u .

Again if these vectors are linearly dependent we continue the

. . n n+i
Gram-Schmidt process with one or more of the vectors e , e

an zn an-1

cee 4 € to produce e , ... , e . The Gram-Schmidt pro-

. n
cess can always be carried out because the vectors e , ... ,
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ezn-l are linearly independent. Continuing in this manner
we produce a succession of blocks of n mutually orthogonal
vectofs. Such a sequence of directions satisfies our defini-
tion of uniform linear independence.

In the next algorithm we combine the Rosenbrock direc;
tions with a modification of the usual minimization algorithm
similar to the modification we suggested for the Curry algo-
rithm in the last section. In this modified algorithm we fix
C > 0 and choose up+l= uP - tpep € L, such that
(4.2.1) g(uf- tpep)

= min{g(up— tep):up— teP ¢ Lo; 0 = t = Cg'(up)ep}.

Theorem 4.2.1. Let the sequence of directions {ep} be

chosen as described above, with the sign taken so that

1
g'(up)ep z 0. Define the sequence of iterates W = up-tpep

by (4.2.1). If g'(u) = 0 has isolated solutions then the

iterates up are well-defined and converge to a solution of

g'(u) = 0.

Proof: Since Ly 1is closed the intersection of

+
[up,up—Cg'(up)ep)ep] with Ly is compact and therefore up :

is always defined and in Lg. As noted in our remarks fol-

p+lH - 0. Now

lowing Theorem 3.2.3, g'(uW)eP~ 0 and ||uP- u
recall that a sequence of vectors is uniformly linearly inde-

pendent (Definition 2.4.1) if there is some m=n and c¢ >

0
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such that for any p*' and any X € E"

(4.2.2) max {lXTepl} z  cllx].
p'+1=p=p'+m

For the Rosenbrock directions, in every 2n-1 successive ele-

ments of {ep} there are n that are mutually orthogonal and

=

therefore we can satisfy (4.2.2) with m = 2n-1 and ¢ =n °.

By Theorem 2.4.1, g'(up) - 0, and then by Theorem 2.2.1, the

sequence {uP}converges to a zero of g'.

' : +1
If we had used the usual minimization algorithm, w7 =

up— tpep such that
(4.2.3) g(up+1) = min{g(up— tep):t z Q; WP~ tef ¢ Lo},

we would not have been able to conclude that [uf- WP - 0

’

directly from g'(up)epﬂ 0. Recall that in Theorem 4.l1l.1 we
assumed property S, to prove that Hup— up+1H - 0 verified

that the algorithm always satisfies

A

(4.2.4) g(up) = g(tup+(l—t)up+l) z g(up+l), 0 =t c

for some fixed c¢ > 0, and applied Theorem 2.4.2. But for
(4.2.3) only the second inequality in (4.2.4) follows direct-
ly. If, however, g is quasi-convex (i.e., for any u,Vv € D,
g(u) = g(v) implies g(w) = g(v) for all w in the interval
(u,v)) then (4.2.4) follows. ©Now, in Theorem 1l.4.1 we showed
that quasi-convexity plus property S 1is eqguivalent to strict

quasi-convexity. Therefore we can prove convergence for

(4.2.3) with uniformly linearly independent directions, by

l
|
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assuming that g 1is strictly guasi-convex.

Since Theorems 4.2.1, 4.1.1 and 4.1.2 all rest on the
uniform linear independence of {ep}, it is clear that 4.2.1
is also valid if the sequence {ep} consists of the Gauss-
Seidel directions, and by the same token 4.1l.1 and 4.1.2 ap-

ply to the Rosenbrock direction algorithm.

4.3 The Seidel and Gauss-Southwell Directions. Some
direction algorithms use only the coordinate directions e,
€34 eos en, but instead of choosing them cyclically, as in
the Gauss-Seidel algorithm, the coordinate is selected accor-
ding to some particular criterion. For example, the Gauss-

Southwell algorithm chooses a coordinate vector € satisfy-

ing
(4.3.1) V(W) E| = max g'(up)e.
lg l 1=i=n l ll
and sets ep= sgn(g'(up)EYE. This is not a free-steering

method (Definition 2.5.1) since in general every coordinate
direction need not appear infinitely often in the sequence
{eP:p = 0,1, ...}. However, since e is the direction cor-
responding to the largest component of the gradient, it is a
gradient-related method (Definition 2.3.1). In fact, (4.3.1)
easily implies

(4.3.2) g' (PP = n-%ng'(up)ﬂ.

Goldstein [14] has analysed this choice of direction in
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conjunction with several step-size algorithms.

In this section we will study a similar method, the Sei-
del algorithm, which selects a coordinate vector using a dif-
ferent criterion.

For the quadratic functional g(u) = uTAu + bTu + c,
where A is the matrix (aij), set

uTA + bT = (1,2, oce o rn) = rT.
Then the Seidel algorithm uses the coordinate direction e
for which (ri)z/aii is a maximum. For the non-guadratic

minimization problem this corresponds to choosing € as a

coordinate vector which satisfies

(4.4.3) <g-<u§)?>_2 - mex (g (W) ey)?
g" (u”)ee =1=n g"(up)eiei

and setting

(4.3.4) P = sgn(g' (WF)9) 5.

In Theorem 4.3.1 we shall consider using these directions in
conjunction with taking one relaxed Newton step towards the

solution of g'(up - tep)ep = 0. That is, the iteration is

(g'(up)ep)

4.3.5 I P,

( ! : T g (uP)ePeP

for

(4.3.6) dl(g'(up)ep) =Ew_E 2y - dl(g'(up)ep)

P

R W N Ny e R N S O SR S8 B A = 2 e

i A B
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where d; is a forcing function and vy is given by

inff g" (We. e,
u, tig (u—tei)eiei

(4.3.7) ¥ = min {

:t 2 0; [u,u-te. J€ Lo}}
1=i=n i .

Theorem 4.3.1. Suppose that g has a bounded, uniform-

ly positive definite second derivative in Ly, i.e.,

TA

(4.3.8) cfnll® = g" (Whh = c|n|j?, u€lLy, 0<cégCc,
and the iterates {upzé =0,1, ...} are given by (4.3.3)-
(4.3.7). Then the iterates are well-defined, remain in I,
and the sequence converges to the unigue minimum of g .in
Lo -

Proof: From (4.3.4) the sequence of directions {ep}

contains only n distinct directions (up to a choice of sign)

and therefore
PP
g"(u)e e o
= i 3 = - -
(3.3.5) v l;f{t,u{g"(u—tep)epep : t 2 0; u,u-te” € Lo}}

reduces to (4.3.7). Therefore, Theorem 3.3.1 shows that the
sequence {uP} is well-defined, remains in L, and g'(up)ep~ 0.
By (4.3.8) and (4.3.3)

(g' (PD)eP)?
g" (u¥) ePeP

(g' (&) eP) 2
C

v (P
(g' (u )ei)2

g"(up) e, e,
i i

)

(i

Il
'._J
.

.

.

o]
S

. P
(g' (u )ei)z
c

v

(1 =1, ... ,n)
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and thus

(c/nC) —%Hg' (uP) |

v

(4.3.9) g' (uP)eP .

Hence the sequence of directions {ep} is gradient-
related and it follows immediately from g'(up)ep~ 0 and
(4.3.9) that g'(up) - 0. Moreover (4.3.8) implies that
g'(u) = 0 has only one solution x* in Ly and g(x*) is
the‘minimum of g in Lg. Therefore the sequence up has
precisely one limit point and converges.

As a corollary we have the following result whose proof
follows easily from the appropriate corollaries of Theorem
3.3.1.

Corollary 1. Suppose g satisfies the conditions of

Theorem 4.3.1. Then:
(a) (4.3.6) may be replaced by
a (gt (@) ef) s w = 2¢/C - & (g (&) eP)
and the conclusions of the theorem remain valid;
(b) 4if g" 1is constant (4.3.6) may be replaced by
(g (u)ef) 5w =2 - (g (W)e)
and the conclusions of the theorem remain valid;
(c) 1if g" satisfies (4.3.8) in all of D and g" is

uniformly continuous in a neighborhood of x*, the

minimum of g in D, then for any ¢ > 0 it is
possible to choose u° sufficiently close to x¥
that the results of the theorem follow for wp

satisfying

E S mm g ) /
; R R N TN e o n B o = = - e e
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4.4 Modified Jacobi and Newton Iterations. In this

section we consider two algorithms, the Jacobi method and
Newton's method and show how they may be modified to obtain
iterates satisfying g(up) z g(up+l) and g'(up) ~ 0. We de-
scribe the Jacobi method first.

Let ey, ... , e, be the orthonormal coordinate vectors
of E?  and let ti be the smallest non-negative solution of
(4.4.1) . g'(up—t sgn(g'(up)ei)ei)ei = O,~ 1=23i=Sn.

We then set

(4.4.2) W = uP- E[tisgn(g'(up)ei)ei].

In general g(ﬁp) need not be smaller than g(up) and there-
fore we modify this algorithm using the Goldstein algorithm

as generalized in section 3.5.

set WP =T if W™ € p and
(4.5.3) g(P) - g@ =z 4g' (v¥) (WP- ),
otherwise choose some 0 < wp < 1 such that up+1 = w§ﬁp +
(l—wp)up satisfies
(4.4.4) g(®) - g(®™) = %g' (&) (- FT), P e,

and
+1 +1 +1

(4.4.5) |g®)- g )= g' (&) (- WP | 2 kgt (bF) (WP-dPT) .

The next theorem gives sufficient conditions for this itera-

tion to converge.
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Theorem 4.4.1. Suppose D 1is convex and

L = {u € D: g(u) = g(u®)} is closed and bounded. Let g be

bounded below on L, and let the iteration upTl= up—tp ep be

defined by (4.4.1) through (4.4.5). Then the iterates are
well-defined, remain in L and g'(up) - 0.
Proof: Since L 1is closed and bounded, the equations

(4.4.1) have solutions such that - tisgn(g'(up)ei)e:.L € L

and therefore T is well-defined (though it may not belong

P_ =P P)

to D). Moreover, u = u if and only if g'(u = 0. Sup-

pose, therefore, that g'(up) # 0 and let k satisfy

(4.4.6) lg'(up)ekl = _max lg'(up)eil7

1=i=n

-1
then Ig'(up)ekl Z2n ° Hg‘(up . We shall show first that

(3.5.4) is satisfied. Let ©&(t) be defined by (1.1.7) and

set of = up—tksgn(g'(up)ek)ek. Tt follows that ©F € L and

|- P = |- 68| = £, = 8 (g (aP)-g" (&P )

= 6 (] (g* () -g" (8% e |)

and since g'(ﬁp)ek = 0, we then have

iV

“x

v

(4.4.7) |uP= &P 5 (lg' (e, )

5 (% g (&®) )

v

and (3.5.4) holds. We can also conclude that the direction

P =3 tisgnig (WP)e,)e,/| Tot.e | is gradient-related
i1 Fi ilei/llizr Fi®y .

1

We have

up)ep

n
g' ( = igl e lgt el lZ, el
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2 % t, g (WP)e |/ 5t
i=l i i i=l i’
Since L 1is bounded, it has a diameter C > 0 and hence
ti = C. By (4.4.7) we then have
(4.4.9) g'(up)ep z tklg'(up)ekl/ nC
- S
=z 8(n g (WP) D lg () /™2
= a(llg' W™
- SO -
where d(t) = 6(n “t)t/Cn is the product of forcing
p

functions and hence forcing. Therefore the directions e
are gradient-related, and [lg' (V)| # 0 implies g'(u¥)ef > o.

Since (3.5.4) is satisfied we may apply Theorem 3.5.1 and

nt+
L

conclude that u is well-defined, lies in L and

g'(up)ep - 0 as p - . Then (4.4.9) implies that g'(up)~ 0.
Newton's method, WP WP- [g"(up)]_lg'(up)T, like the
Jacobi iteration has gradient-related directions, but may
not decrease the value of g at each step. We will there-
fore modify the Newton iterates using the Armijo procedure
as described in section 3.5.
Let
(4.4.10) WP WP wp[g" WP 17 g (BT,
where w§ is the first number in the sequence 1,%.%, ...

to satisfy

(4.4.11) g(up)— g(up— wPEg"(up)]_lg'(up)T)
)T

1Y

%wpg'(up)[g"(up)]_lg‘(up
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- T
for uP- wp[g"(up)] : g'(up) € D.

Theorem 4.4.2. Suppose g" 1is continuous and strictly

positive definite in D, and D is convex. Then the itera-
tion defined by (4.4.10) and (4.4.11) converges to the mini-
mum of g in D.

Proof: g has convex, and hence connected, level sets
and thus L, is the only component of {u € D:g(u) = g(u°)}.
Since g" -is continuous and strictly positive definite and

L, is compact we have

1A

(4.4.12) clnll® = g" (u)hh = cllni|?, u€ Ly, 0<c=C.

This implies [q"(u)]_l exists, satisfies

glnl? = 0¥ (" () Pn = Hnl®, w e Lo,
and thus W = uf- [g“(up)]-lg'(up)T is well-defined for
P ¢ Lo. If g'(up) = 0, T = up; otherwise

H[g“(up)]_lg'(up)TH

i

(4.4.13) P~ &

W

L g (D

and the iteration satisfies (3.5.4). Further,
g' (WD) g (W®) 1 g (WD) T
Ilg" (v®) ™ 1g' (u®) 7))

i

g' (uP) &P

g' (dF) ||

v

N

(1/0) lg* (@) |12/ g (&)
(4.4.14)

v

(1/0) lg* (&) || / (1/e)

v

c/c lg* (&™) ],
and the directions &P= [g“(up)]'-lg'(up)T / Hg"(up)_lg'(up)TH

are gradient-related. By Theorem 3.5.1, up+l is well-defined,



103
lies in Lo and g'()ef = 0. This and (4.4.14) imply
g'(up) - 0 and since the only solution of g'(u) = 0 is
x*, the unique minimum of g in D, the sequence W con-
verges to x¥*.

We note that Goldstein [17] has shown that for g"
satisfying the hypothesis of the theorem there exists a num~
ber. N such that for p Z N, wp = 1 satisfies (4.4.11).

Therefore, .after a finite number of iterations, this algo-

rithm coincides with the Newton algorithm.




CHAPTER V

BLOCK METHODS

5.1 Introduction. The block Gauss~Seidel algorithm we

consider in this c¢hapter is a generalization of the usual or
"point" Gauss-Seidel method we considered in the preceeding
chapters, and we will motivate it by considering the problem

of solving a system of simultaneous equations written as

it

Fl(xl,...,xn) 0

Fn(xl""'xn) = 0.

In the Gauss-Seidel algorithm the eqguations are treated cy-
clically, one at a time, the first equation solved for the
first unknown, etc. In the block Gauss-Seidel method the
unknowns and equations are divided into groups or blocks.
The first block of equations is then solved simultaneously
for the first block of unknowns. Then, substituting these
values, the second block of equations is solved for the sec-
ond block of unknowns, etc. In general, the blocks need not
have the same number of elements. However, when all the
blocks consist of precisely one element, this reduces to the
usual Gauss-Seidel method.

Consider, for example, the system of simultaneous equa~

tions that arises from the discretization of a boundary val-

104
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ue problem for a partial differential eqguation. 1In this
case a grid is established in the region of interest and the
unknowns represent values of the solution of the partial
differential equation at grid points. One natural way of
choosing blocks for such a system is to let a block consist
of all unknowns associated with a certain grid line. For
example, in a planar region we may choose our blocks as the
horizontal.or the vertical grid lines. 1In another variation
we may alternate between them on successive "sweeps" of the
system.

1N A s A S g g

TP e e o emam e m o] e de b 1
Wwe 1Ow CONSider un€ Correspondaing minimiza

rithms. Let eq, SRR R YL . be the orthonormal coordinate

vectors of E®. In the Gauss-Seidel algorithm we select the

+1
next iterate up such that

(5.1.1) o € {up-tei:i = p(mod n), t € R}.
Suppose, however, the integers 0,1,...,n-1 are grouped into
k Dblocks so that if # = {i:0=i<n} then there are k sets

I, such that ULy = and I, N Ij = @, i#j. In the block

Gauss~Seidel method we require that

up+1

(5.1.2) € (W + viv € Hyr § = p(mod x)},

where
H., = spante.: 1 € I.;.
3 pan{e. j}
Note that (5.1.2) reduces to (5.1.1) when all the blocks
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have precisely one element. Thus we seek the next iterate
in the affine subspace up 23 Hj' 7 = p{(mod k), where
(5.1.3) H, © *** 0 H =g
P O 1 Hk- .
p+l . :
When u is chosen as the solution of

(5.1.4) g'(uyh =0, h € Hj’ u € o ) Hj’ j = p(mod k),

for Hj = span{ei:i € Ij}, this is then the cyclic block
Gauss-Seidel method described above.

The algorithms we considered in Chapter IV were com-
posed of two parts - choosing a direction and picking a
step-size. In a block algorithm we have three steps because
the direction is computed in two stages. First we select a
subspace Hp’ then a direction &% € Hp and finally the
step-size tp. Our analysis is also in three parts. 1In
Chapter III we have seen that suitable choice of tp im-
plies that g'(up)ep - 0. 1In Section 5.3 we will show we
can choose ef ¢ Hp such that g'(up)ep - 0 implies
Pp[g'(up)T] - 0 where Pp is the orthogonal projection of
En onto H . 1In Section 5.2 we shall give sufficien%t con-
ditions on the choice of blocks Hp so that Pp[g'(up)T] -0
implies g'(up) = 0, and in the final section we combine
these results to obtain complete convergence theorems for

block methods.

The underlying assumptions in this chapter are the same
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as in Chapter IV. We assume that g:D c En - R has a con-~

-

is a closed bounded component of the level set
{usg(u) = g(u®’)} containing the initial iterate u°.

5.2 Choice of Subspaces. In Section 2.4 we general-

ized the use of coordinate vectors by the concept of uniform

linear independence. We now introduce the analogous concept

for subspaces.

Definition 5.2.1. Let {Hp:p = 0,1,...} Dbe a sequence

of subspaces of En and Pp be the orthogonal projection

n . . .
cf E onto H . The sequence {H } is uniformly linearly
L5 .

indggendent if there is a ¢ > 0 and an integer m such

that for any x € E"  and integer p

(5.2.1) lrgnaigm{l%Peri(X) 13 = clixll.

If the sequence {Hp} is generated by the cyclic use
of a fixed number of subspaces satisfying (5.1.3) it is
easily seen to be uniformly linearly independent. The next
theorem, whose proof is analogous to that of Theorem 2.4.1
gives conditions under which Pp[g'(up)T] ~ 0 implies
g' (W) - 0.

Theorem 5.2.1. Suppose {up:p =0,1,...} c D, © D,

where D, is compact, and {Hp:p =0,1,...} 1is a sequence of

uniformly linearly independent subspaces. If
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[o® - <®H

l - 0 and Pp[g'(up)T] - 0 as p - «®, then
g' (WF) =~ 0, p ~ =
Proof: Let € > 0 be given. Since g' 1s uniformly
continuous on D, the function § defined by (1.1.7), i.e.,
s(t) = inf{fu-vl:u,v e D ;llg' (W) -g' (V)| = ¢},

satisfies 6(t) 2 0. Therefore, because Hup—up+lH - 0 and

Pp[g'(up)T] - 0, we can find a K sufficiently large that

(5.2.2) lP-uP ) = s gec)/m,  p 2k,
and
(5.2.3) HPp[g'<up)T]H = Lec, p Z K,

where m -and c¢ are the constants of (5.2.1) in the defini~
tion of uniform linear independence. From (5.2.2) and the

triangle inequality it follows that

(5.2.4) [uP-uP" ] = 6 (4e0) 1 =i =m,
and then the definition of & implies that
+1 .
lg' (@) -g* (@) | = %ec, 1=1i=m.

Since Py is a projection, and thus HPPH = 1, we have

PyT L g (PP T

v

Lec HPp[g'(u -

Y

le Lo ()73 - llp_Lg )71,

and thus for 1 = 1

A

m,

p+l)T]“

v

Bec + HPp[g'(u HPp[q’(up)T]H-
It then follows from (5.2.3) that

K,

fiA
b
fiA
8
el
v

ec HPp+i[g'(up)T]H, 1
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which with the uniform linear independence of {Hp}, implies
that

g W T = clgr ™,

= 2% Py

and therefore for p £ K we have Hg'(up)ﬂ 2 ¢. But e
was arbitrary and hence g'(up) - 0.

5.3 Directions Within a Subspace. In this section we

study methods of picking &P e Hp such that g'(up)ep -0

implies Pp(g'(up)T) -~ 0. One method is immediately clear.

If ef e Hp is arbitrary when Pp(g'(up)T) = 0, and other-

wise satisfies

(5.3.1) L =p (g [p_(g' ()T

then HPp(g'(up)T)H = g'(up)ep and we have g'(up)ep - 0
implies Pp(g'(up)T) - 0. Less immediately we have a result

that applies to the Block Gauss-Seidel algorithm. Here eP

is chosen such that {ub-tef:t = 0} contains the minimum of
g in the intersection of LO with uf @ Hp'
Theorem 5.3.1. Suppose {up:p =0,1,...}]< Lo, g is

uniformly pseudo-convex on L, and ef e Hp satisfies

HepH = 1 and
R p
(5.3.2) g' (u -tpe Yh = 0, for all h € Hp,
and some tp z 0. Then g'(up)ep - 0 implies Pp(g'(up)T)
- 0.

Proof: Since L, 1is compact g has a minimum on
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(WP ¢ = 10 L, at some x* and by Theorem 1.3.1, uniform
p ]

pseudo~convexity implies that x* = up—tpep. Thus

g(up—tpep) = g(up), and by the uniform pseudo-convexity of
g,

g' (uF) (P - (up-tpep)) = d(ntpepu) ntpepn,
where d is the forcing function in the definition of uni-
form pseudo-convexity, so that
lg" (@) - g (a"-t e 1P =za(e).

But for ¢ defined by (1.1.7)

W

e = |lu® - (up-tpep)H

Py s (P P
o 5(llg* (uW)-g* (u te ) 1)

1%

6 (Jle lg* (w%) - g'(up—tpep>T3H)
and since Pp(g'(up~tpep)T) = 0,

9t e = atsp lot ()T,
and the result follows.

The next theorem applies to the direction obtained by

P

taking one Newton step from u towards solving

(5.3.3) g' (wh = 0, uew o n hoeH,.

’

To compute this direction suppose Hp is an m dimensional

n
subspace of E and Vl""'vm are m mutually orthogonal

vectors that span Hp. If Ap is the n x m matrix

(v. ... vm ) then all elements of Hp are linear combina-~

1

tions of wv., ... ,v and thus
1 m

W en = {up + A V: VvV € Em}.
p P
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. . p m .
In particular, if h(v) = g(u +Apv), v € E , then solving
h'(v) = 0 is equivalent to solving (5.3.3), and we consider
the Newton iteration for h'(v) = 0. Since
h'(v) = g'(up + A V)A

P P

and

hu (V)

T P
Ag'"(uw 4+ A Vv)A
Pg ( b ) P

taking one Newton step with v initially zero yields

T ) ~1 P T
‘v =0 - (A g'"{(u)a ‘(u”)a
o = o9 (u¥) p] lg* (u") p]
and thus one Newton step from up is
+
up 1 = up - A Vv
Ppp
P T P -1.7 p\T
= u = A (A g"(u)Aa A g'(u
p[ o9 (u™) p] pd (u™)
P v Py T
= u -~ B u ,
o7 (u™)
where
. T P -1 7T
5.3.4 B =2a_[Aag"(u)Aa A_.
( ) o p.[ o9 (WA ]l "ag
When HBpg'(up)TH =0 let &f e Hp be arbitrary. Otherwise
set
T T
(5.3.5) & =39 (/B g 7.

Theorem 5.3.2. Suppose g has a continuous, strictly

positive definite second derivative on L, the sequence

P

{up} C L, is given, and e is defined by (5.3.5). Then

g' (WP)eP - 0 implies Pp(g'(up)T) ~ 0.

Proof: Since L, 1is compact g“(up) satisfies

c|lnl®

1A

higt (WP)h = CHhH2 h e E’, 0<c=C
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and since HAth = |hll, h e E", we have
cHhH2 = hTATg"(up)A h = cHth, hesx.
P P
Thus
(/0 n[* s n%(alg" <up>Ap>'lh = (1/c) ||n|?

m
for h € E ., Further,

. . P T ,,.P -1 ) T
(g' (u )AP)EApg (u {ép] (g' (u )Ap)

P, P
g'(u’)e” = T
w . P -1, . ,.P T
llApEApg (@)a 17 (g" (W) I
(1/0) g (up>ApH2
- T -1 T
lall asem @ a) ™ | e a®1a) ™|
= (c/C) ';[g'(up)Apl.
But HPp(g'(up)T)H = Hg'(up)APH and the result follows.

In the proof of the theorem the strict positive defi-
niteness of g"(up) was used only to conclude that
Agg“(up)Ap was strictly positive definite. For the cyclic
block Gauss-Seidel Newton method, therefore, it is sufficient

to assume that the appropriate principle leading minors of

g" are strictly positive definite.

5.4 Convergence Theorems for Block Methods. We will
now apply the results of Chapter III and the two previous
sections to give complete convergence theorems for several
block methods. Our first theorem applies to the cyclic block

Gauss-Seidel method. Let Hl' ...,Hk be given subspaces
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such that
N e o0& eA — n
He @ H _=E.
Set
- A
(5.4.1) H = H., j = nod k
o 3 j = pl )
suppose that ap z 0, ep € Hp satisfy
' P Py o
g'{u-a_e )h = 0, for all h € H ,
P P
and set
(5.4.2) up-l'l = up - w a ep.
: PP

When the Hj are coordinate subspaces this is the cyclic
block Gauss-Seidel algorithm. However, for any fixed set of
subspaces we have the follo

Theorem 5.4.1. Assume that g is uniformly pseudo-

convex in fLo and the sequence of iterates is given by
(5.4.2). Then the iterates will be well-defined and con-
verge to x*, the unique minimum of g '.in Ly, if for some
forcing function 4,

(a) wp satisfies

(5.4.3) a(g' (WP)eP) =
(b) or if g' is Lipschitz continuous on Lo with
Lipschitz constant C, uniformly pseudo-convex with a forcing
function ct for ¢ > 0, Gp satisfies d(g'(up)ep) = ep

=1, and wp satisfies

1
5.4.4 1=w =1+ (c/C)*(1~ ,
( ) o ( ) “( ep)
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(¢) or if g" @exists and is constant in L, and wp

satisfies

(5.4.5) d(g'(up)ep) = wp =2 - d(g'(up)ep)-

Proof: The existence of x* follows from our assumption

that 1L, is compact, and the unigueness of x* from the

uniform pseudo-convexity of g on L,. Since F e Hp,

(5.4.2) implies g‘(up—apep)ep = 0 and by Theorem 1.3.1 this
implies g(up—apep) =) g(up). Pseudo~-convexity then implies
g'(up)ep 2 0 and thus (5.4.2) represents a relaxed Curry
iteration. Applying respectively, Theorem 3.2.1, Corclliarv
1 of Theorem 3.4.1, or Corollary 3 of Theorem 3.3.1 in parts
(a), (b), or (c¢) we may conclude the iterates up are well-
defined and g'(up)ep -~ 0. From Theorem 5.3.1 Pp [g'(up)Tj
- 0, where Pp is the orthogonal projection of En to Hb.
But the sequence of subspaces {Hp} is uniformly linearly
independent, by Theorem 2.4.3 Hup—up+lH - 0, and hence by
Theorem 5.2.1, g'(up) - 0. Since x* 1is the only solution
of g'(u) = 0, the iterates must converge to x*.

Note that when all the subspaces Hn are one dimension-—
al this theorem is a result for the usual or point Gauss-
Seidel method. For the point method, part (a) has already
been shown to hold in Theorem 4.1.1 assuming only property S

instead of the much stronger condition of uniform pseudo-
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convexity. For w? 2 1, parts (b), (¢) and thg theorem be-
low represent our best result, even if the blocks are one
dimensional.

We now give a local convergence result for this algo-
rithm.

Theorem 5.4.2. Assume an interior local minimum x* of

g in D exists. If in a neighborhood N of x¥*, g"
exists, is continuous, and satisfies

(5.4.6) . cHth = g"(u)hh = ClthZ, heEr, uen,
then for any 0 < ¢ =1 if u° is sufficiently close to

xX* then wb may be taken to satisfy

and the iterates (5.4.2) will be well-defined and converge
to x¥*.

Proof: It follows from Corollary 2 of Theorem 3.4.1
that the iterates are well-defined, remain in N, and
g'(up)ep - 0. As in the proof of Theorem 5.4.1 this implies

g'(up) - 0. By (5.4.6) x* is the only local minimim of g

in N and the iterates must converge to x¥*.

Our next theorem is a result about the block Gauss-
Seidel-Newton method when the subspaces H,, ... 'Hk—l are
coordinate subspaces. We only assume, however, that the

subspaces Hp, ... 'Hk-l are fixed, satisfy
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and

(5.4.7) e}

Instead of solving

(5.4.8) g‘(u)yh = 0, ueuw 3 , h e H?,
exactly we take one Newton step from uP towards the solu-

tion. As with Newton's method itself the algorithm must be

modified and we use the Armijo proceedure. Thus

p+1 o) p,T
5.4.9 u = u = wBg'l{u
( ) b pg {(u™)

where B is given by (5.3.4), and wp is the first number
in the sequence 1,%,%,... to satisfy

T T
(5.4.10) g(up)—g(up-wpspg'<up) ) = l/zwpqwup)Bngup) :

Theorem 5.4.3. Suppose g" exists, is continuous and

strictly positive definite in 1IL,, let {Hp:p=0.l,... }
satisfy (5.4.7), and let up+l be given by (5.4.9) where wb
~is the first element in the sequence 1,%,%,... to satisfy
(5.4.10). Then the iterates are well-defined and converge
to the minimim of g in L,.
Proof;; We are applying the Armijo algorithm to the

iteration uF = up - Bpg‘(up)T which satisfies (3.5.4) and
by Theorem 3.5.1 the iterates are well-defined and g'(up)ep

- 0. By Theorem 5.3.2, Pp(g'(up)T) - 0. The sequence {Hp}

is uniformly linearly independent and thus by Theorem 5.2.1
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g'kupf - 0. Since the minimum x* is the only solution of

p

g‘(u) = 0 the sequence {u } converges to x¥*.

The equation (5.4.8) is in general difficult to solve

and even using one Newton step from up

renuires inverting
a matrix at each iteration. We consider next an algorithm
which takes one gradient step towards solving (5.4.8), and
thus is simple to apply. When g is Lipschitz continuous
we set
(5.4.11) | up+1 = u’ - (w /Cc)p (g'(up)T)

P P
where C 1is a Lipschitz constant for g' and wp satisfies
(5.4.12) d(HPp[g' )T = w, =2 - d(HPng' ) T3l

for a forcing function d. We then have

Theorem 5.4.4. Suppose g' has isolated zeros and is

Lipschitz continuous in L, {Hp:p = 0,1,... } is defined

by (5.4.7) and uF'l

is given by (5.4.11). Then the iterates
are well-defined 'and converge to a solution of g'(u) = O.
Proof: From Theorem 3.3.2 the iterates are well-defined
and g'(up)ep - 0. Since g'(up)ep = HPp(g'(up)T)H and the
secuence of directions is uniformly linearly independent,

by Theorem 5.2.1 we have g'(up) - 0. The convergence of the

iterates follows from Theorem 2.2.1.
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